
NAVAL POSTGRADUATE SCHOOL
MONTEREY, CALIFORNIA

THESIS

DESIGN OF A SERIAL COMMUNICATION
PROTOCOL AND BUS INTERFACE CHIP FOR

TACTILE COMMUNICATIONS

by

Jeffrey P. Link

March 1999

Thesis Advisors: Douglas J. Fouts
Jon T. Butler

Approved for public release; distribution is unlimited.

REPORT DOCUMENTATION PAGE
Form Approved OMB
No. 0704-0188.

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instruction, searching existing data sources, gathering
and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of
information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite
1204, Arlington, VA 222024302, and to the Office of Management and Budget. Paperwork Reduction Project (0704-0188) Washington DC 20503.

1. AGENCY USE ONLY (Leave blank) REPORT DATE

March 1999
REPORT TYPE AND DATES COVERED

Master's Thesis
4. TITLE AND SUBTITLE

DESIGN OF A SERIAL COMMUNICATION PROTOCOL AND
BUS INTERFACE CHIP FOR TACTILE COMMUNICATIONS

6. AUTHOR(S)

Jeffrey P. Link

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

Naval Postgraduate School
Monterey, CA 93943-5000

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

FUNDING NUMBERS

8. PERFORMING ORGANIZATION
REPORT NUMBER

10. SPONSORING/MONITORING
AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES

The views expressed in this thesis are those of the author and do not reflect the official policy or
position of the Department of Defense or the U.S. Government.

12a. DISTRIBUTION/ AVAILABILITY STATEMENT

Approved for public release; distribution is unlimited.
12b. DISTRIBUTION CODE

13. ABSTRACT (maximum 200 words)

Tactile communication requires rapid data transfer along a common bus. The developed
communication protocol and application-specific interface chip enable precise control of multiple
tactile transmitters (tactors) to convey information to military users. This extrapolation of the Tactile
Situation Awareness System developed by the Naval Aerospace Medical Research Laboratory uses a
serial data bus and individual interface chips to communicate commands with a minimum number of
conductors. This thesis develops the communication protocol and the design of the Tactor Interface
Chip (TIC). This work also includes a computer-driven tactile array controller and Parallel Port Data
Modulator for TIC testing and demonstration.

14. SUBJECT TERMS

Electronics, Tactile, Interface, Tactor, TSAS, Serial Communications

17. SECURITY CLASSIFICATION
OF REPORT

 Unclassified

18. SECURITY CLASSIFICATION
OF TfflS PAGE

 Unclassified

19. SECURITY CLASSIFICATION
OF ABSTRACT

Unclassified

15. NUMBER OF PAGES

316
16. PRICE CODE

20. LIMITATION OF
ABSTRACT

UL
NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)

Prescribed by ANSI Std. 239-18,298-102

11

Approved for public release; distribution is unlimited.

DESIGN OF A SERIAL COMMUNICATION PROTOCOL AND
BUS INTERFACE CHIP FOR TACTILE COMMUNICATIONS

Jeffrey P. Link
Lieutenant Commander, United States Navy

B.S., Iowa State University, 1985
M.A., Webster University, 1991

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN ELECTRICAL ENGINEERING

from the

NAVAL POSTGRADUATE SCHOOL
March 1999

Author:

Approved by:

Jeffrey P. Link

Douglas J. Fouts, Thesis Advisor

UB. Knorr, Chairman
Department of Electrical and Computer Engineering

m

IV

ABSTRACT

Tactile communication requires rapid data transfer along a common bus. The

developed communication protocol and application-specific interface chip enable precise

control of multiple tactile transmitters (tactors) to convey information to military users. This

extrapolation of the Tactile Situation Awareness System developed by the Naval Aerospace

Medical Research Laboratory uses a serial data bus and individual interface chips to

communicate commands with a minimum number of conductors. This thesis develops the

communication protocol and the design of the Tactor Interface Chip (TIC). This work also

includes a computer-driven tactile array controller and Parallel Port Data Modulator for TIC

testing and demonstration.

VI

TABLE OF CONTENTS

I. INTRODUCTION 1

A. COMMUNICATING THROUGH TOUCH 2

B. TACTILE SITUATION AWARENESS SYSTEM BY NAMRL 3

C. DEVELOPING INTELLIGENT TACTORS 4

D. THESIS OUTLINE 5

II. COMMUNICATION PROTOCOL 7

A. DESIGN REQUIREMENTS 7

1. Required Output 7

2. System Configuration 8

B. CONTROL STRUCTURE 9

1. Address 9

2. Pulse Shape 9

C. COMMAND FORMAT 10

1. Address Command Word 10

2. Pulse Width Word 11

3. Repetition Period Word 12

D. BUS ARCHITECTURAL CONSIDERATIONS 12

1. Command Promulgation Speed 13

2. Parallel Bus 13

3. Serial Bus 14

E. ARCHITECTURAL DECISION AND JUSTIFICATION 15

F. TRANSMISSION PACKET FORMAT 15

G. PHYSICAL CONSTRUCTION REQUIREMENTS 16

1. TIC and Tactor Power 17

2. Command Data and Timing Signals 17

vii

III. TACTOR INTERFACE CHIP SPECIFICATION AND DESIGN 19

A. DESIGN GOALS 19

B. OPERATIONAL CONCEPT 20

1. Serial Data Receiver 21

2. Command Decoder and Controller 21

3. Tactor Power Controller 21

C. OPERATIONAL DESCRIPTION 22

D. FUNCTIONAL MODULE DESIGN 23

1. Serial Data Receiver 23

2. Command Decoder and Controller 24

3. Tactor Power Controller 26

E. VERILOG® DESIGN VERIFICATION 27

1. Twelve-Bit Input Shift Register 28

2. Eight-Bit Data Latch 28

3. Input Stream Validity Check 29

4. Command Sequence Controller '. 31

5. Address Comparator 34

6. Address Reference 34

7. Pulse Width Register 35

8. Repetition Period Register 36

9. Power Control Logic 37

10. Power Oscillator 38

11. Pulse Width Down Counter 39

12. Repetition Period Down Counter 40

13. Clock Divider 41

F STRUCTURAL COMPONENT DESIGN 42

1. Structural Circuit Optimization 43

2. Twelve-Bit Input Shift Register 44

3. Eight-Bit Data Latch '. 44

viii

4. Input Stream Validity Check 44

5. Command Sequence Controller 45

6. Address Comparator 46

7. Address Reference 46

8. Pulse Width Register 46

9. Repetition Period Register 47

10. Power Control Logic 47

11. Power Oscillator 47

12. Pulse Width Down Counter 47

13. Repetition Period Down Counter 48

14. Clock Divider 49

G. ADVANCED DESIGN FEATURES 49

1. Multiple Command Packet Addressing 49

2. All-Call Address 50

3. Dual Reset Circuit 50

4. Selectable Oscillator Frequency 50

5. Selectable Address 50

H. ANIMATION OF TACTOR INTERFACE CHIP OPERATIONS 51

1. TIC Visual Representation 51

2. Animation Color Scheme 52

IV. TACTOR INTERFACE CHIP VLSI IMPLEMENTATION 55

A. COMPETING VLSI DESIGN CONSTRAINTS 55

1. Size 55

2. Power 55

3. Speed 56

B. CMOS FET TRANSISTOR SIZING 56

1. Determining PFET Size From NFET Size 56

2. Basic Response Timing 57

B. LOGIC ELEMENT DESIGN 59

ix

C. COMBINED LOGIC COMPONENT CONSTRUCTION 59

E. MODULE ASSEMBLY 60

F. INPUT AND OUTPUT CONSIDERATIONS 60

G. COMPLETE TACTOR INTERFACE CHIP 61

H. COMPREHENSIVE SYSTEM TESTING 63

V. PARALLEL PORT DATA MODULATOR 65

A CREATING A SERIAL COMMAND STREAM 65

B. PARALLEL PORT INTERFACING AND CONTROL 66

C. MODULATOR DESIGN SPECIFICS 68

D. CREATING A PRINTED CIRCUIT BOARD LAYOUT 69

E. PRINTED CIRCUIT BOARD MANUFACTURING '. 72

F. PRINTED CIRCUIT BOARD ASSEMBLY 73

G. SOFTWARE TO DRIVE THE COMMAND MODULATOR 74

H. COMMAND MODULATOR TESTING 75

I. MODIFICATIONS TO THE MODULATOR DESIGN 76

VI. TACTOR INTERFACE CHIP TESTING 77

A. VLSI CHIP RECEIPT FROM FABRICATION 77

B. VISUAL INSPECTION 78

C. OPERATIONAL CHECK USING COMMAND MODULATOR78

D. COMPLETE SYSTEM RESIMULATION 79

E. SCANNING ELECTRON MICROSCOPE INSPECTION 79

F. CHARGED ELECTRON IMAGING 81

G. FURTHER TESTING 82

x

VII. REVISIONS TO THE COMMUNICATION PROTOCOL 83

A. EVALUATION OF REGISTER COMMAND PAIRS 83

B. TACTILE ARRAY SIZING 84

C. PROGRAMMABLE OSCILLATION FREQUENCY 84

D. COMMANDED RESET 85

E. REVISED COMMANDED STRUCTURE 85

VIII. INCORPORATION OF ADDITIONAL DESIGN FEATURES 87

A. IMPROVED BI-DIRECTIONAL CURRENT SWITCHING SCHEME 87

B. PROGRAMMABLE OSCILLATION FREQUENCY 89

C. WAVE SHAPE GENERATION USING DUTY CYCLE 90

D. REVISED COMMAND DECODER AND CONTROLLER 91

IX. CONCLUSIONS AND FURTHER WORK 93

A. TACTILE INTERFACE SYSTEM PERFORMANCE 93

1. Simulation Performance during Design Process 93

2. Parallel Port Data Modulator Performance 93

3. Manufactured TIC Performance 94

B. IMPROVEMENTS THAT ARE READY TO INCORPORATE 94

1. Expanded Communication Protocol 94

2. Shaped Oscillation Current 94

3. Programmable Frequency 95

C. RECOMMENDATIONS FOR NEXT VLSI LAYOUT 95

1. Elaborate Testing and Measurement Points 95

2. Timing with Up Counters and Comparators 95

D. PROSPECTS FOR FUTURE DEVELOPMENT 95

1. On-board Current Switching 95

xi

2. Programmable Addressing 96

3. Two-Way Communications 96

APPENDIX A. TIC MODELING USING VERILOG 97

A. TACTOR INTERFACE CHIP 97

B. SERIAL DATA RECEIVER 100

1. Twelve-Bit Input Shift Register 102

2. Eight-Bit Data Latch 105

3. Input Stream Validity Check 107

C. COMMAND DECODER AND CONTROLLER 110

1. Command Sequence Controller 113

2. Address Comparator 117

3. Address Reference 120

4. Pulse Width Register 121

5. Repetition Period Register 124

D. TACTOR POWER CONTROLLER 127

1. Power Control Logic 129

2. Power Oscillator 131

3. Pulse Width Down Counter 133

4. Repetition Period Down Counter 136

5. Clock Divider 139

E. SUPPORT COMPONENTS 142

1. Clock with Parametric Half-Period 142

2. D flip-flop, positive edge triggered 143

3. Transmission Gate MUX 145

APPENDIX B. SYSTEM DESIGN SCHEMATICS 147

A. SERIAL DATA RECEIVER 147

1. Twelve-Bit Input Shift Register »147

xii

2. Eight-Bit Data Latch 148

3. Input Stream Validity Check 148

C. COMMAND DECODER AND CONTROLLER 149

1. Command Sequence Controller 149

2. Address Comparator 150

3. Pulse Width Register 151

4. Repetition Period Register 152

D TACTOR POWER CONTROLLER 153

1. Power Control Logic 153

2. Power Oscillator 153

3. Pulse Width Down Counter 154

4. Repetition Period Down Counter 155

5. Clock Divider 156

APPENDIX C. STRUCTURAL EVALUATION USING SPICE 157

A. GENERAL DEFINITION FILES 157

1. CMOS FET Model Parameters 158

2. Fundamental Logic Element Definitions 159

B. SERIAL DATA RECEIVER 164

1. Twelve-Bit Input Shift Register 167

2. Eight-Bit Data Latch 169

3. Input Stream Validity Check 172

C. COMMAND DECODER AND CONTROLLER 176

1. Command Sequence Controller 182

2. Address Comparator 185

3. Pulse Width Register 188

4. Repetition Period Register 191

D. TACTOR POWER CONTROLLER 194

1. Power Control Logic 198

xiii

2. Power Oscillator 198

3. Pulse Width Down Counter 200

4. Repetition Period Down Counter 203

5. Clock Divider 206

APPENDIX D. TACTILE INTERFACE ANIMATION PROGRAM 209

A. ANIMATION DESIGN 209

1. TIC Visual Representation 209

2. Animation Color Scheme 210

B. ANIMATION PROGRAMMING 211

1. Intelligent Tactor 212

2. Command Byte 216

3. TIC Demo 218

4. Demonstration Applet HTML File 221

APPENDIX E. VLSI LOGIC ELEMENT DESIGN 223

A. LOGIC ELEMENT SCHEMATICS 223

1. Inverter 223

2. Two Input NAND 223

3. Three Input NAND 224

4. Four Input NAND 224

5. Three Input AND 224

6. Four Input AND 225

7. Two Input NOR 225

8. Three Input NOR 225

9. Two Input XOR 226

10. Two Input XNOR 226

11. D Flip Hop with Clear 227

12. Two Input Multiplexer 227

B. LOGIC ELEMENT SPICE SIMULATIONS 227

xiv

1. Inverter 228

2. Two Input NAND 228

3. Three Input NAND 229

4. Four Input NAND... 230

5. Three Input AND 231

6. Four Input AND 232

7. Two Input NOR 233

8. Three Input NOR 234

9. Two Input XOR 235

10. Two Input XNOR 236

11. D Flip Flop with Clear 237

12. Two Input Multiplexer 238

C. VLSILAYOUT 239

1. Legend of Layout Layers 239

2. Inverter 240

3. Two Input NAND 241

4. Three Input NAND 242

5. Four Input NAND 243

6. Three Input AND 244

7. Four Input AND 245

8. Two Input NOR 246

9. Three Input NOR 247

10. Two Input XOR 248

11. Two Input XNOR 249

12. D Hip Flop with Clear 250

13. Two Input Multiplexer 251

APPENDIX F. PARALLEL DATA MODULATOR DESIGN 253

A. COMMAND MODULATOR DESIGN USING VERILOG®.... 253

1. Four-Bit Register with Equality and Parity Calculation 255

xv

2. Control State Machine 256

3. Eight-to-One Multiplexer 259

B. COMMAND MODULATOR IMPLEMENTATION USING ABEL™ 261

1. Four-Bit Register with Equality and Parity Calculation 261

2. Control State Machine 263

3. Eight-to-One Multiplexer 265

C. COMMAND MODULATOR ELEMENT INFORMATION 267

1. Four-Bit Register with Equality and Parity Calculation 268

2. Control State Machine 271

3. Eight-to-One Multiplexer 274

APPENDIX G. COMMAND TRANSMISSION PROGRAM 277

A. PARALLEL PORT COMMAND TRANSMISSION 277

APPENDIX H. GOMAC CONFERENCE PAPER 279

LIST OF REFERENCES 285

INITIAL DISTRIBUTION LIST 287

xvi

xvu

LIST OF FIGURES

Figure 1. TSAS Tactor Control 3

Figure 2. Local Tactor Control 4

Figure 3. Composition of the Intelligent Tactor 5

Figure 4. Tactor Current-Switching Structure 8

Figure 5. Tactor Activation Parameters 9

Figure 6. Standard USART data packet format 16

Figure 7. TIC Functional Modules 20

Figure 8. TIC Operating States and Transitions 22

Figure 9. Serial Data Receiver Elements 24

Figure 10. Partial clearing prevents Erroneous Command Detection 24

Figure 11. Command Decoder and Controller Elements 26

Figure 12. Tactor Power Controller Elements 27

Figure 13. Alternate Structures for Realizing the Address Comparator 43

Figure 14. Tactile Interface Animation Basics 52

Figure 15. Tactile Interface Animation in Progress 53

Figure 16. Inverter Response for Various PFET Widths 57

Figure 17. Delay Circuit for Measuring Inverter Response 58

Figure 18. Inverter Transmission Response for Delay Circuit 58

Figure 19. Completed Tactor Interface Chip VLSI Design 62

Figure 20. Layout Map of the Tactor Interface Chip VLSI Design 63

Figure 21. Simulation Results from the Complete TIC Design 64

Figure 22. Command Modulator Conceptual Design 66

Figure 23. Parallel Port Connector with Pins Numbered 68

Figure 24. Parallel Port Modulator Component Layout 70

Figure 25. Parallel Port Modulator Top Layer Routing 71

Figure 26. Parallel Port Modulator Bottom Layer Routing 71

Figure 27. Command Modulator Top Layer after Machining 73

Figure 28. Fully Assembled Command Modulator 74

Figure 29. Command Modulator Output for 19 Command 75

xvui

Figure 30. Command Modulator Output for 218 Command 76

Figure 31. Tactor Interface Chip Pin Assignments 78

Figure 32. Scanning Electron Microscope Images of Potential Shorts 80

Figure 33. Scanning Electron Microscope Images of Aluminum Oxidation 80

Figure 34. Scanning Electron Microscope Image of Mask Failure 81

Figure 35. Scanning Electron Microscope Images of Embedded Impurities 81

Figure 36. Tactor Current-Switching Structure 88

Figure 37. Initial Current Switching Pattern 88

Figure 38. Revised Current Switching Pattern 88

Figure 39. Generating the Oscillation Frequency with Revised Switching 89

Figure 40. Wave Shape Generation using a Duty Cycle Register '. 90

Figure 41. Revised Command Decoder and Controller module 91

Figure 42. TIC Test Bench Verflog® source code 97

Figure 43. TIC Behavioral model Verflog® source code 99

Figure 44. TIC Structural model Verflog® source code 99

Figure 45. Serial Data Receiver Test Bench Verflog® source code 100

Figure 46. Serial Data Receiver Behavioral model Verilog® source code 101

Figure 47. Serial Data Receiver Structural model Verilog® source code 101

Figure 48. Twelve-Bit Input Shift Register Test Bench Verilog® source code 102

Figure 49. Twelve-Bit Input Shift Register Behavioral model Verilog® source code 103

Figure 50. Twelve-Bit Input Shift Register Structural model Verilog® source code 104

Figure 51. Eight-Bit Data Latch Test Bench Verilog® source code 105

Figure 52. Eight-Bit Data Latch Behavioral model Verilog® source code 106

Figure 53. Eight-Bit Data Latch Structural model Verilog® source code 106

Figure 54. Input Stream Validity Check Test Bench Verilog® source code 107

Figure 55. Input Stream Validity Check Behavioral model Verilog® source code 108

Figure 56. Input Stream Validity Check Structural model Verilog® source code 109

Figure 57. Command Decoder and Controller Test Bench Verilog® source code 110

Figure 58. Command Decoder and Controller Behavioral model Verilog® source code. ..Ill

Figure 59. Command Decoder and Controller Structural model Verilog® source code 112

xix

Figure 60. Command Sequence Controller Test Bench Verilog® source code 113

Figure 61. Command Sequence Controller Behavioral model Verilog® source code 114

Figure 62. Command Sequence Controller Structural model Verilog® source code 116

Figure 63. Address Comparator Test Bench Verilog® source code 117

Figure 64. Address Comparator Behavioral model Verilog® source code 117

Figure 65. Address Comparator Structural model VerilogR source code 118

Figure 66. Address Comparator Alternate Structural model Verilog® source code 119

Figure 67. Address Reference Test Bench Verilog® source code 120

Figure 68. Address Reference Behavioral model Verilog® source code 120

Figure 69. Pulse Width Register Test Bench Verilog® source code 121

Figure 70. Pulse Width Register Behavioral model Verilog® source code 122

Figure 71. Pulse Width Register Structural model Verilog® source code 123

Figure 72. Repetition Period Register Test Bench Verilog® source code 124

Figure 73. Repetition Period Register Behavioral model Verilog® source code 125

Figure 74. Repetition Period Register Structural model Verilog® source code 126

Figure 75. Tactor Power Controller Test Bench Verilog® source code 127

Figure 76. Tactor Power Controller Behavioral model Verilog® source code 127

Figure 77. Tactor Power Controller Structural model Verilog® source code 128

Figure 78. Power Control Logic Test Bench Verilog® source code 129

Figure 79. Power Control Logic Behavioral model Verilog® source code 130

Figure 80. Power Control Logic Structural model Verilog® source code 130

Figure 81. Power Oscillator Test Bench Verilog® source code 131

Figure 82. Power Oscillator Behavioral model Verilog® source code 132

Figure 83. Power Oscillator Structural model Verilog® source code 132

Figure 84. Pulse Width Down Counter Test Bench Verilog® source code 133

Figure 85. Pulse Width Down Counter Behavioral model Verilog® source code 134

Figure 86. Pulse Width Down Counter Structural model Verilog® source code. 135

Figure 87. Repetition Period Down Counter Test Bench Verilog® source code 136

Figure 88. Repetition Period Down Counter Behavioral model Verilog® source code 137

xx

Figure 89. Repetition Period Down Counter Structural model Verilog® source code 137

Figure 90. Clock Divider Test Bench Verilog® source code 139

Figure 91. Clock Divider Behavioral model Verilog® source code 140

Figure 92. Clock Divider Structural model Verilog® source code 140

Figure 93. Clock with Parametric Half-Period Test Bench Verilog® source code 142

Figure 94. Clock with Parametric Half-Period Behavioral model Verilog® source code... 142

Figure 95. D flip-flop Test Bench Verilog® source code 143

Figure 96. D flip-flop Behavioral model Verilog® source code 144

Figure 97. Transmission Gate MUX Test Bench Verilog® source code 145

Figure 98. Transmission Gate MUX Behavioral model Verilog® source code 145

Figure 99. Structural Schematic for the Twelve-Bit Shift Register 147

Figure 100. Structural Schematic for the Eight-Bit Data Latch 148

Figure 101. Structural Schematic for the Input Stream Validity Check 148

Figure 102. Structural Schematic for the Command Sequence Controller 149

Figure 103. Structural Schematic for the Address Comparator 150

Figure 104. Structural Schematic for the Pulse Width Register 151

Figure 105. Structural Schematic for the Repetition Period Register 152

Figure 106. Structural Schematic for the Power Control Logic 153

Figure 107. Structural Schematic for the Power Oscillator 153

Figure 108. Structural Schematic for the Pulse Width Down Counter 154

Figure 109. Structural Schematic for the Repetition Period Down Counter 155

Figure 110. Structural Schematic for the Clock Divider 156

Figure 111. CMOS PFET and NFET SPICE model definitions 158

Figure 112. Subcircuits for Fundamental Logic Element SPICE model definitions 159

Figure 113. Serial Data Receiver SPICE model source code 164

Figure 114. Serial Data Receiver SPICE model response 166

Figure 115. Twelve-Bit Input Shift Register SPICE model source code 167

Figure 116. Twelve-Bit Input Shift Register SPICE model response 168

Figure 117. Eight-Bit Data Latch SPICE model source code 169

Figure 118. Eight-Bit Data Latch SPICE model input 170

xxi

Figure 119. Eight-Bit Data Latch SPICE model response 171

Figure 120. Input Stream Validity Check SPICE model source code 173

Figure 121. Input Stream Validity Check SPICE model input 174

Figure 122. Input Stream Validity Check SPICE model response 175

Figure 123. Command Decoder and Controller SPICE model source code 178

Figure 124. Command Decoder and Controller SPICE model Control response 180

Figure 125. Command Decoder and Controller SPICE model Register response 181

Figure 126. Command Sequence Controller SPICE model source code 183

Figure 127. Command Sequence Controller SPICE model response 184

Figure 128. Address Comparator SPICE model source code 186

Figure 129. Address Comparator SPICE model response 187

Figure 130. Pulse Width Register SPICE model source code 189

Figure 131. Pulse Width Register SPICE model response 190

Figure 132. Repetition Period Register SPICE model source code 192

Figure 133. Repetition Period Register SPICE model response 193

Figure 134. Tactor Power Controller SPICE model source code 195

Figure 135. Tactor Power Controller SPICE model response 197

Figure 136. Power Oscillator SPICE model source code 198

Figure 137. Power Oscillator SPICE model response 199

Figure 138. Pulse Width Down Counter SPICE model source code 201

Figure 139. Pulse Width Down Counter SPICE model response 202

Figure 140. Repetition Period Down Counter SPICE model source code 203

Figure 141. Repetition Period Down Counter SPICE model response 205

Figure 142. Clock Divider SPICE model source code 207

Figure 143. Clock Divider SPICE model response 208

Figure 144. Tactile Interface Animation Elements 210

Figure 145. Tactile Interface Animation in Progress 211

Figure 146. Intelligent Tactor object JAVA source code 212

Figure 147. TIC Command object JAVA source code 216

Figure 148. Tactile Array Demonstration object JAVA source code 218

Figure 149. Tactile Demonstration Applet HTML source code 221

xxii

Figure 150. Inverter schematic 223

Figure 151. Two Input NAND Gate schematic 223

Figure 152. Three Input NAND Gate schematic : 224

Figure 153. Four Input NAND Gate schematic. 224

Figure 154. Three Input AND Gate schematic 224

Figure 155. Four Input AND Gate schematic 225

Figure 156. Two Input NOR Gate schematic 225

Figure 157. Three Input NOR Gate schematic 225

Figure 158. Two Input XOR Gate schematic 226

Figure 159. Two Input XNOR Gate schematic 226

Figure 160. D Flip Flop with Clear schematic 227

Figure 161. Two Input Multiplexer schematic 227

Figure 162. Inverter SPICE model source code 228

Figure 163. Two Input NAND gate SPICE model source code 228

Figure 164. Three Input NAND gate SPICE model source code 229

Figure 165. Four Input NAND gate SPICE model source code 230

Figure 166. Three Input AND gate SPICE model source code , 231

Figure 167. Four Input AND gate SPICE model source code 232

Figure 168. Two Input NOR gate SPICE model source code 233

Figure 169. Three Input NOR gate SPICE model source code 234

Figure 170. Two Input XOR gate SPICE model source code 235

Figure 171. Two Input XNOR gate SPICE model source code 236

Figure 172. D Flip Flop with Clear logic element SPICE model source code 237

Figure 173. Two Input MUX logic element SPICE model source code 238

Figure 174. Inverter layout 240

Figure 175. Two Input NAND Gate layout 241

Figure 176. Three Input NAND Gate layout 242

Figure 177. Four Input NAND Gate layout 243

Figure 178. Three Input AND Gate layout 244

Figure 179. Four Input AND Gate layout 245

Figure 180. Two Input NOR Gate layout 246

xxiii

Figure 181. Three Input NOR Gate layout 247

Figure 182. Two Input XOR Gate layout 248

Figure 183. Two Input XNOR Gate layout 249

Figure 184. D Hip Hop with Clear layout 250

Figure 185. Two Input Multiplexer layout 251

Figure 186. Test bench for Parallel Port Data Modulator Verilog® model source code 254

Figure 187. Test bench for Four-Bit Register Verilog® model source code 255

Figure 188. Four-Bit Register Verilog® model source code 256

Figure 189. Test bench for Control State Machine Verilog® model source code 257

Figure 190. Control State Machine Verilog® model source code 258

Figure 191. Test bench for Eight-to-One Multiplexer Verilog® model source code 259

Figure 192. Eight-to-One Multiplexer Verilog® model source code 260

Figure 193. Four-Bit Register ABEL™ source code 262

Figure 194. Control State Machine ABEL™ source code 263

Figure 195. Eight-to-One Multiplexer ABEL™ source code 266

Figure 196. Four-Bit Register Summary Information 268

Figure 197. Control State Machine Summary Information 271

Figure 198. Eight-to-One Multiplexer Summary Information 274

Figure 199. Command Transmission Driver C++ source code 278

Figure 200. GOMAC Conference Paper (page 1 of 4) 280

Figure 201. GOMAC Conference Paper (page 2 of 4) 281

Figure 202. GOMAC Conference Paper (page 3 of 4) 282

Figure 203. GOMAC Conference Paper (page 4 of 4) 283

xxiv

LIST OF TABLES
Table 1. Command Word Definitions 10

Table 2. Address Format Description 11

Table 3. Pulse Width Register Command Description 12

Table 4. Repetition Period Register Command Description 12

Table 5. Required Bus Speed for Different Architectures 13

Table 6. Intelligent Tactor Input Requirements 16

Table 7. Summary of Signals for the Twelve-Bit Input Shift Register 28

Table 8. Summary of Signals for the Eight-Bit Data Latch 29

Table 9. Summary of Signals for the Input Stream Validity Check 30

Table 10. Summary of Signals for the Command Sequence Controller 32

Table 11. Summary of Signals for the Address Comparator 34

Table 12. Summary of Signals for the Address Reference 35

Table 13. Summary of Signals for the Pulse Width Register 35

Table 14. Summary of Signals for the Repetition Period Register 36

Table 15. Summary of Signals for the Power Control Logic 38

Table 16. Summary of Signals for the Power Oscillator 39

Table 17. Summary of Signals for the Pulse Width Down Counter 40

Table 18. Summary of Signals for the Repetition Period Down Counter 41

Table 19. Summary of Signals for the Clock Divider 42

Table 20. Comparison of Alternate Logic Designs 44

Table 21. Inverter Delay Summary 58

Table 22. Component Design Summary 59

Table 23. Standard Parallel Port Signal Definitions and Pin Assignments 67

Table 24. Revised Command Structure 85

Table 25. Legend for Layers used in VLSI Layout 239

xxv

XXVI

ACKNOWLEDGMENTS

I must first acknowledge the impact God has made on my work over the last 27
months. It is only through his influence that I have been able to remain focused on my
research and studies. This work would have been much more difficult without a solid faith
upon which to anchor our lives.

My wife Debra and daughter Nickole deserve special recognition and thanks for
their unwavering support and understanding. Their love is the glue that binds our family
together and has allowed completion of this thesis.

Professor Douglas Fouts was essential in completing this research. He worked hard
to secure project funding and continued to support the research when the funding expired.
His insight was critical to making the right decisions for this project. I also appreciate his
support in getting our work presented at the 1999 GOMAC conference.

Professor Jon Butler was a great instructor and advisor during my study of computer
engineering. I share his love of logic problems and his creative insight often sparked some
of my most fundamental design decisions.

Dave and Addie Floodeen performed the Herculean task of reviewing this entire
thesis for content and flow. Their careful attention corrected many errors and ensured that
the words on the paper matched my intended meaning.

Deb Peyton was essential in reviewing the GOMAC paper. Her help with editing
supported an outstanding final copy.

Debbie Monroe provided support, encouragement, and project evaluation early in
this research. I am grateful for her help and friendship.

Warren Rogers was extremely helpful in manufacturing the circuit board for the
Parallel Port Data Modulator.

John Falby provided guidance regarding development of the tactile interface
animation. In shaping my approach to software development and coding, he influenced my
computer programming skills beyond my expectations.

CDR Angus Ruppert and Brad McGrath of Naval Aerospace Medical Research
Laboratory provided excellent input regarding tactile communication physiology. They
were essential in defining the tactor timing requirements in the earliest phases of system
development.

Finally, I appreciate Terry Wood for his diligent work in developing a miniature
computer system that will enable implementation of this tactile interface. His dedication to
this project will be the fuel that leads it to success.

xxvn

XXV111

I. INTRODUCTION

In a natural environment, people continuously receive sensory information regarding

their position and motion from several sources: visual, aural, and somatosensory (distinct

bodily sensations such as balance). In an accelerating environment, human sensory

information can produce a false sensation of motion. Popular "virtual reality" amusement

rides exploit this effect by providing visual, aural, and somatosensory stimulation that

generates illusory feelings of motion and acceleration.

Under normal flight conditions, pilots frequently transition between a steady

environment and an accelerating one. When most time is spent in a constant velocity

condition, all sensory information concurs with the actual motion and spatial orientation is

maintained. During periods of extended acceleration, such as steep climbs, the body's

somatosensory equilibrium shifts and a false sense of acceleration is experienced during the

subsequent steady environment. This conflicting sensory information can cause a loss of

situational awareness and spatial disorientation. During periods of visual distraction or

obscurity, the pilot must rely on his "feel" for the attitude of the aircraft. The false

acceleration sensation has contributed to many aircraft accidents by causing loss of

situational awareness and spatial disorientation.

When combing an underwater mine field, divers must swim a geographically

referenced search pattern. Geographic position indicators aid the swimmer in combating the

effects of current to maintain the desired search pattern. The current guidance system

provides a visual display of the required swimming direction. Consequently, the divers'

visual search effectiveness becomes severely degraded while they are referencing their

positional displays.

An interface that provides critical information without operator distraction would

benefit many military applications. An ideal system would communicate information

through a medium that does not interrupt concurrent visual and auditory interchange. A

prototypical interface has been developed to tactilely convey information by pulsing tactile

transmitters ("tartars"). These tactors are situated around the torso to provide physical

stimulus in the form of variable-length, pulsed vibrations.

A. COMMUNICATING THROUGH TOUCH

Touch is a physical sensory input not commonly associated with conveying

computer information. Yet, when a person is touched, the response is immediate and often

involuntary. The immediate nature of touch response makes it ideal for communicating

critical information. Tactile communication can also be the most appropriate interface for

specific types of information when existing visual and auditory activities cannot be

compromised.

Existing research shows that various sensory responses can be effected by using

different tactile stimulus methods. Employing "sensory saltation" can produce a feeling of

directional motion using stationary tactors. Using a moving stimulus produces easily

interpreted information that is consistent among many observers.

Additional research identified flight information required to properly operate various

fighter platforms. The required flight data was evaluated for each of the fighters to

determine how well the aircraft presented the parameters to the pilot. Many flight

characteristics are poorly represented in each airframe. The research proposed conveying

flight parameters through tactile transmitters mounted in a partial sleeve worn on the pilot's

forearm.10

B. TACTILE SITUATION AWARENESS SYSTEM BY NAMRL

The Naval Aerospace Medical Research Laboratory (NAMRL) built a rudimentary

implementation of tactile communication in their Tactile Situation Awareness System

(TSAS). As illustrated in Figure 1, the current TSAS implementation uses a remote, parallel

driver to individually power forty (40) tactors. This method requires routing forty pairs of

power lines throughout the tactile vest. A simpler communication method is needed to ease

vest fabrication and maintenance. Additionally, the microprocessor is constantly burdened

with directly controlling power application to every individual tactor.

TSAST actor Control
Tactile

Interface
Array

Microprocessor
based

Controller
-T)^ w ^n

•
•

•

vj

Figure 1. TSAS Tactor Control.

The wiring harness requirements could be dramatically reduced by using a bus

communication structure with local power switching. This approach would provide a

standardized wiring scheme and eliminate the continuous processor load caused by remote

power control. A bus architecture would also maximize flexibility by allowing the number

of tactors to be varied between interface applications.

A miniaturized network interface card will allow connecting all tactors to a single

information bus as shown in Figure 2. Each interface chip will continuously monitor the

bus for a command addressed to its tactor. Upon detection of a properly addressed

command packet, the interface card will decode and execute the command. Power will be

switched by the interface chip to allow the controlling microprocessor to dedicate its full

processing ability to interfacing with the host technology and determining the best tactile

representation of the received platform parameters.

Local Tactor Control

Microprocessor
based

Controller

Tactile
Interface

Array

JO o
Mo

Figure 2. Local Tactor Control.

C. DEVELOPING INTELLIGENT TACTORS

To refine the tactile interface, we developed a compact communication topology for

connecting each tactile transmitter to the controlling microprocessor. Serial

communications were selected for this application to minimize the number of conductors

required for data transfer.

An application-specific Tactor Interface Chip (TIC) provides the necessary hardware

to realize the communication scheme. Each tactor in a forty-element array will include a

TIC, as shown in Figure 3, that controls tactor activation. This hardware combination forms

an "intelligent tactor" that shifts waveform creation from the microprocessor to the

individual tactor assemblies. The resulting decrease in computational load allows use of a

slower microprocessor, decreasing system power consumption.

tactor
housing Tactor Interface Chip

Figure 3. Composition of the Intelligent Tactor.

D. THESIS OUTLINE

The remainder of this thesis is organized as follows. Chapter II discusses

development of the communication protocol. Chapter III discusses specification and design

of the Tactor Interface Chip. Chapter IV discusses the layout and evaluation for the VLSI

implementation of the chip. Chapter V describes development of a parallel-port data

modulator used to drive the tactor array during testing and demonstration. Chapter VI

5

discusses testing the fabricated chip. Chapter VII describes revisions to the communication

protocol. Chapter VIII discusses design changes to incorporate additional features in the

interface chip. Finally, Chapter IX contains conclusions and suggestions for future work.

Many appendices are included to provide specific technical data necessary to fully

understand the design efforts and decisions. Appendix A contains listings of the Verilog

source code used to design and evaluate the electronic modules that comprise the TIC.

Appendix B provides schematic diagrams of all TIC modules and components. Appendix C

details the SPICE simulations performed to validate and verify all aspects of the TIC design.

Appendix D covers the animation program used to illustrate the operational relationships

between the received components and the various TIC components. Appendix E contains

the design details of the VLSI logic elements used to implement the TIC on a single

microchip. Appendix F provides all design efforts in creating the Parallel Port Data

Modulator for sending commands from a standard computer parallel port to the tactile array.

Appendix G documents the program written in C++ to place command bytes on the parallel

port for subsequent transmission by the command modulator. Appendix H includes a copy

of Reference 2, the paper presenting this research to the 1999 Government Microcircuit

Application Conference (GOMAC). The files listings from all appendices have been

compiled separately on CD-ROM.

n. COMMUNICATION PROTOCOL

To support implementation of a tactile information interface, it is necessary to

develop a communication protocol that meets the system control requirements. When a

suitable command protocol is defined, various architectures can be evaluated to determine

the best option for rapid communication between a controlling microprocessor and (at least)

forty tactile transmitters. Flexibility and expansion are supported by using a common

communication bus and intelligent tactors. As mentioned in the previous chapter, an

intelligent tactor is formed by mounting a Tactor Interface Chip (TIC) in the tactor housing

(see Figure 3) to locally control tactor activation. This chapter presents the command

structure developed and the communications architectural design to implement the tactile

interface.

A. DESIGN REQUIREMENTS

To establish a framework for system design, we must first take a macroscopic view

of the intelligent tactor. Fundamentally, the TIC must control the application of current to

the attached tactor as directed by the system controller. Additionally, the command

structure must support the addition of ore tactors to the present system.

1. Required Output

Each TIC must provide a controlled, bi-directional current to the attached tactor in

response to commands it receives from the controlling microprocessor. When activated, the

TIC must energize the tactor at the specific frequency for which the tactor is designed. The

activation duty cycle is determined by the commands received; commands are fully

discussed in the following section. The TIC must activate the tactor as soon as an

appropriate command is received and it must immediately stop tactile stimulus when a

"terminate" command is received.

Bi-directional current is achieved using the switching network illustrated in Figure 4.

The TIC activates the switch pairs of Figure 4 in an alternating fashion to drive current

through the tactor in opposite directions.

Figure 4. Tactor Current-Switching Structure.

2. System Configuration

The tactor control system must be capable of independently issuing commands to

forty individual tactors. The activation cycle should repeat with a minimum period of 100

mS and a maximum of 4000 mS. During the activation cycle, the TIC must be able to adjust

the length of activation from a minimum of approximately 50 mS to a maximum of

approximately 1000 mS. Finally, the system must be able to sequentially activate two

tactors within one millisecond (1 mS) of each other.

B. CONTROLSTRUCTURE

1. Address

Transmission of tactile messages requires each tactor in the forty-element array to be

capable of producing defined pulse shapes. These tactile signals can be independent or

synchronized with several other tactors. Each TIC must be able to recognize commands

meant to control its attached tactor since the pulse shape parameters are transmitted on a

common data bus. Unique identification is accomplished by assigning an "address" to each

TIC.

2. Pulse Shape

Tactors are repeatedly pulsed to convey information to the user. Changing the pulse

duration and pulse rate creates different physical sensations; this can be used to relate

differing messages. Pulse shape production requires two parameters, pulse width and

repetition period, illustrated in Figure 5. These values are stored in TIC data registers and

are used to control tactor activation.

K pulse width

bipolar tactor
activation

■H

tactor
idle

K repetition period *l
Figure 5. Tactor Activation Parameters.

C COMMAND FORMAT

It is best to use an eight-bit command language format, if possible, since the tactor

array is being driven by a commercial-off-the-shelf microprocessor and associated

communication ICs. Therefore, the first iteration of the command structure evaluated the

feasibility of incorporating all desired TIC functionality within the 256 different eight-bit

commands. To simplify the interpretation of the commands, it is most effective to group the

commands together in a way that minimizes the number of bits that uniquely identify a

command type. Considering these two goals and the three basic command types it is best to

separate the commands into one set of 128 and two sets of 64. To accommodate the desired

number of tactors and to allow for future expansion with more tactors or multiple addresses

on a single TIC (discussed later), the 128 command group is assigned to the address

commands. This provided similar command words for the two register-type command sets,

pulse width and repetition period. The command distribution plan is outlined in Table 1 and

discussed in more detail in the following subsections.

Command Word Meaning

Oxxxxxxx 7-bit Address

lOxxxxxx 6-bit Pulse Width

1lxxxxxx 6-bit Repetition Period

Table 1. Command Word Definitions.

1. Address Command Word

The tactor address command word indicates to which tactor the subsequent

command is being sent. This addressing plan allows issuing a command to a single tactor

since each TIC contains a unique identifier. Table 2 summarizes the address command

10

word format. The all-zeros address is not used since this is the reset condition of the TIC

input register and internal data bus. The current convention provides capacity for up to 126

tactors. Additionally, the format can support future incorporation of tactor group

addressing. The all-ones address is hard-wired into every TIC to provide a universal

command capability. Uses for the "ALL CALL" configuration include turning off all

tactors during operations or energizing all tactors for testing. System design allows

stringing several addresses together before issuing the register command bytes. This will

facilitate concurrently issuing an identical command to numerous tactors.

Address Word Meaning

00000000 Reserved ~ TIC bus idle condition

00000001
to

01111110

Addresses for up to 126 tactors; may
also include group addresses.

01111111 ALL CALL ~ all tactors respond

Table 2. Address Format Description.

2. Pulse Width Word

The Pulse Width command sets the actual length of time the tactor is energized. The

Pulse Width command format is summarized in Table 3. This command is implemented by

passing a value that represents the number of 16 mS time divisions to apply power to the

tactor. A value of zero is used to turn off the tactor. Using 16 mS time divisions with a 6-

bit multiplier (factor) produces 63 possible activation lengths including 0, 16, 32, . . . and

1008 mS. The 16 mS time divisions are generated by dividing an input reference pulse.

11

Register Command Meaning

10000000 Turn tactor OFF

10000001
to

10111111

Set Pulse Width to 1 through 63
multiples of 16 mS (16 to 1008 mS)

Table 3. Pulse Width Register Command Description.

3. Repetition Period Word

The Repetition Period command defines the period used for pulse repetition. The

Repetition Period command format is summarized in Table 4. This command is

implemented by passing a value that represents the number of 64 mS time divisions to wait

before re-energizing the tactor. If Pulse Width is greater than zero, a zero Repetition Period

will energize the tactor continuously. Using 64 mS time divisions with a 6-bit multiple

produces 63 possible repetition period lengths ranging from 64 mS to 4032 mS. The 64 mS

time divisions are also generated by dividing an input reference pulse. A repetition value

that represents a time length less than or equal to the "on" time will keep the tactor

continuously energized.

Register Command Meaning

1 1000000 Tactor ON continuously if PW > 0

11000001
to

11111111

Set Repetition Period to 1 through 63
multiples of 64 mS (64 to 4032 mS)

Table 4. Repetition Period Register Command Description.

D. BUS ARCHITECTURAL CONSIDERATIONS

A primary concern regarding interface design is ease of system fabrication and

maintenance. Basic error detection is necessary from an operational perspective to prevent

12

system response to spurious noise. A parity checksum is used to detect single-bit errors.

This section compares two communications architectural design options for the tactile

interface.

1. Command Promulgation Speed

From a system architecture perspective, the most critical constraint is the speed at

which commands must be implemented by the TIC. This constraint is extrapolated from the

specification for a 1 mS maximum time between commands. The 1 mS maximum

command separation requirement can be met using either a parallel or serial data bus by

adjusting the data transmission clock speed. To evaluate the minimum data bus speed for

different architectures, the frequency required to transmit a given command length in 1 mS

is calculated. In a parallel implementation, each command byte requires a single clock cycle

to transmit. In a serial implementation, each byte requires eleven clock cycles: a start bit,

eight data bits, a parity bit, and a stop bit. Table 5 summarizes the bus speed requirements.

Command Length Parallel Bus Speed Serial Bus Speed*

2 bytes 2 kHz 22 kHz

3 bytes 3 kHz 33 kHz

4 bytes 4 kHz 44 kHz

5 bytes 5 kHz 55 kHz

* Serial communication incurs a 3-bit overhead for data packet formatting.

Table 5. Required Bus Speed for Different Architectures.

2. Parallel Bus

Parallel bus architecture allows the fastest data transfer from the microprocessor to

the TIC. However, Table 5 shows that data transfer rates are not a limiting factor for this

13

application since bus speeds over 1 MHz are available. The advantages and disadvantages

of using parallel bus architecture include:

a. Advantages:

(1) Simplified TIC circuit design. The TIC could directly latch the

data byte from the external bus onto the internal command bus.

(2) Much faster data transfer or lower required bus speed for a given

data rate. The reduction in required speed would reduce the required transmission power.

b. Disadvantages:

(1) Additional wiring is required in the harness assembly and vest

for data communications. This greatly complicates the fabrication process and makes

maintenance and repair much more difficult. This also increases the size of the wiring

harness and the weight of the system implementation.

3. Serial Bus

Serial bus architecture reduces the number of wires needed for data transferring but

it requires a much more complex TIC input design. Advantages and disadvantages of using

serial bus architecture include:

a. Advantages:

(1) A minimum number of wires can be used in the wiring harness

and vest. This will ease fabrication and maintenance while reducing the size and weight.

b. Disadvantages:

(1) Much slower data transfer rate or higher required bus speed for a

given data rate.

14

(2) Much more complex TIC input circuitry. A serial to parallel

decoder must be implemented to support conversion of the serial data stream to parallel

command words.

E. ARCHITECTURAL DECISION AND JUSTD7ICATION

The Serial Bus architecture is used for this implementation. This choice is primarily

based on the following essential considerations:

1. Fewer harness conductors will make vest construction and maintenance much

easier. Fewer connections at each TIC will also reduce the risk of failure and incorrect

wiring. Additionally, fewer wires will minimize the system size and weight.

2. Conversion from parallel data to a serial communication stream is easy to include

at the controlling microprocessor. This custom parallel-to-serial conversion can be easily

adapted to allow use of many different microprocessors for future implementations.

3. Serial to parallel conversion at the TIC can be included in the VLSI design and

actually requires about the same layout area necessary to accommodate eight additional

input pads.

F. TRANSMISSION PACKET FORMAT

The Universal Synchronous/Asynchronous Receiver-Transmitter (USART) standard

provides a format for transmitting eight bit data by encapsulating the data into an eleven-bit

packet. The USART packet model is used to package the command bytes into a serial bit

stream that can be easily detected. The command packet, illustrated in Figure 6, includes a

start bit, eight data bits, a parity bit, and a stop bit. This package format also provides basic

fault protection by detecting all single-bit errors. While idle, the data line is held at a logic

"1"(+5V).

15

A i i ! I ' 1 1 1 0 f x ix x Ix j x xxx
1 I i ; 1 ! (P 1

start 8 data bits parity stop

Figure 6. Standard USART data packet format.

When no data is present, the serial communication line is in an idle state, held at

logic 1. The data packet begins with a start bit that consists of a single 0. The start bit is

followed by eight bits of data, which are transmitted in order from the most significant bit to

the least significant bit. A running count is performed on the data bits and the number of l's

is used to calculate the value of the parity bit. Using odd parity (the typical mode) yields a

parity bit of 1 when the data bit count is even and a value of 0 when the data bit count is

odd. This scheme always produces an odd number of l's at the receiver when the eight data

bits and single parity bit values are counted. The parity, bit provides detection of all single-

bit errors in the data stream. Finally, a stop bit of 1 is sent and the system is ready to

transmit the next data packet.

G. PHYSICAL CONSTRUCTION REQUIREMENTS

Inputs to the TIC fall into two basic categories: chip/tactor power and data/timing

signals. Table 6 summarizes the input requirements for the intelligent tactor.

Line Description

a) +5V Power for TIC and tactor

b) Ground Common ground line

c) Data Serial communication bus

d) Clock Synchronous clock signal

Table 6. Intelligent Tactor Input Requirements.

16

1. TIC and Tactor Power

The chip and tactor share a single +5 V power supply and a single ground line. Very

little power is needed to operate the chip since CMOS FET technology was used for TIC

fabrication. The entire chip, consisting of roughly 2000 transistors, requires approximately

8 mA of current. Each tactor will require between 100 mA and 250 mA (depending on

installed tactor) during operation.

2. Command Data and Timing Signals

The TIC receives all data on a single line whose voltage is referenced to the

common ground. A clock signal provided by the microprocessor facilitates synchronous

serial data transfer. The clock signal is also used to generate the timing references for the

control down counters and the tactor current oscillator.

17

18

in. TACTOR INTERFACE CHIP SPECIFICATION AND DESIGN

After defining the communication protocol needed to convey control signals to the

tactile interface, it is necessary to develop the hardware that will convert the serial

commands into tactile stimulus. The Tactor Interface Chip (TIC) is the application-specific

integrated circuit that converts the serial command stream into the bi-directional current that

drives the tactile stimulators. After discussing the TIC design goals, this chapter relates the

development process through all levels of abstraction. The conceptual operation is first

discussed as a system that is broken into three functional modules. Each functional module

is then defined by its operational requirements. The functional modules are then separated

into several assemblies with specific, cardinal tasks. Behavioral level system modeling and

simulation is then explained. Behavioral model conversion into logical structures and the

simulation and testing is described next. Finally, advanced system design features included

in the TIC are discussed.

A. DESIGN GOALS

In creating an intelligent tactor, the two primary design goals resulted from the need

to incorporate the TIC directly into the tactor casing. First, to reduce the size of the tactor

casing, all control circuitry must fit onto a single VLSI control chip. Second, to simplify

tactile interface production, a single design must be used for all tactors in the array. In the

prototypical version, use of a single TIC design for all tactors is possible by externally

setting the address parameter by grounding TIC input pins. In a future implementation, a

better mechanism could be devised to define the address of an individual tactor. The initial

TIC design also does not incorporate the solid-state power switches necessary for causing

bi-directional current to flow in the tactor. External power transistors are used to provide
19

current switching based on control signals from the TIC. This design was accepted due to

the expense of fabricating large transistors in a BiCMOS chip. Planned modifications to the

existing design are discussed in the "Future Improvements" section of this thesis.

B. OPERATIONAL CONCEPT

Conceptually, the Tactor Interface Chip will interpret commands received on a serial

data bus and control tactor activation based on those commands. This scheme can be

broken into the three functional areas, recovery of the eight-bit command from the serial

data stream, interpretation of the command to affect wave shape parameters, and generation

of the ordered waveform. This organization is illustrated in Figure 7 and discussed in the

following subsections.

TIC Operational Components

Serial
Comm;

Power 9
mds
—►

Serial
Data

Receiver

I actor interlace onip >

Command
Decoder and

Controller
Com

E
mand
us

i

1 Registers
f X A and Com rol

Tactor Power
Controller Bipolar Current

Figure 7. TIC Functional Modules.

20

1. Serial Data Receiver

The first functional component, the Serial Data Receiver, continuously monitors the

serial data bus and decodes the bit stream to detect properly formatted data packets. When a

valid packet is detected, the command byte is latched onto an internal command bus and a

data-valid signal is sent to the Command Decoder and Controller.

2. Command Decoder and Controller

The second functional component is the Command Decoder and Controller. This

module interprets every command received to determine if the command applies to the

attached tactor. Relevant commands are executed and the associated memory registers are

updated. Extraneous commands are ignored. The Tactor Power Controller is notified of

changes to ensure that tactor activation is immediately adjusted to conform to the new

parametric settings.

3. Tactor Power Controller

The final functional component is the Tactor Power Controller. This module

continuously produces two complementary timing signals tuned to the operating frequency

of the attached tactor. These signals are used to alternately activate the switch pairs in the

current-switching network shown in Figure 4. When timing signals are applied to the

switching network, the tactor provides stimulus to the user. The activation wave shape

described in Figure 5 is created by passing and blocking the oscillation signals based on the

Pulse Width and Repetition Period values stored in the memory registers of the Command

Decoder and Controller.

21

C. OPERATIONAL DESCRIPTION

The heart of TIC operations is the Command Decoder and Controller. As new

commands are placed on the command bus by the Serial Data Receiver, the data-valid signal

triggers evaluation by the Command Decoder and Controller. Response to the received

commands is controlled by the existing TIC operational state. The operational state changes

based on the current state and the valid commands received by the TIC. The state diagram

in Figure 8 illustrates the TIC operating sequence and defines the state transitions.

Awaiting Valid Address

Register Command Received Valid Address Received

Initial State Transition Condition Next State

All Reset asserted A

A Bus valid & valid address B

B Any other address received B

B Any register command received C

C Any address received A

C Any register command received C

Figure 8. TIC Operating States and Transitions.

22

Initially, the TIC is in a monitor state waiting to receive a valid address. When an

appropriate address is received, the TIC shifts to a condition that waits for a command to set

the register values. When a register command is received, the TIC enters a state that

responds to all register commands until an address is detected. Any address received after a

register command marks the end of the command cycle and shifts the TIC to the monitor

state where it waits for the next properly addressed command set. This operating sequence

provides easy control consistent with the defined communication structure. An additional

benefit of this approach is that it allows a set of register commands to be sent to several

tactors simultaneously by preceding the commands with a string of address words.

D. FUNCTIONAL MODULE DESIGN

The top-down approach greatly simplifies circuit design by separating the specific

tasks into three functional modules. Each functional module is designed to operate

independently with well-defined inputs and outputs. This modular approach also greatly

simplifies testing at all design levels.

1. Serial Data Receiver

The Serial Data Receiver (Figure 9) continuously monitors the input data line to

detect and latch transmitted packets onto the command bus. It consists of a twelve-bit shift

register, a validity checker, and an eight-bit latch. The twelve most recent data bits received

on the serial data input line are stored in the shift register. The entire 12-bit set is evaluated

using the data-packet format rules. When a string of bits is detected that meets the validity

check, the byte embedded within the data packet is latched onto the command bus. The

latch signal also generates a "Bus Data Valid" signal that triggers command decoding.

When a valid command is latched, a feedback path partially clears the shift register. This

23

Clearing action ensures that two immediately sequential data packets do not produce an

erroneous command detection as shown in Figure 10. The partial clearing action also resets

the latch signal since the shift register contents no longer match the required data packet

format.

Serial Data Receiver

Serial
12 bit Input Shift Register *

. Partial Clear

Input

12 bit Input Bus
t

Input Stream
Validity Check Clock i '

Input """
8 bit Data Latch

_ Latch

System
Reset

1 ' ?
8 bit Command Bus Bus Data Valid

Figure 9. Serial Data Receiver Elements.

idle Addr 10 idle PW12 idle
111 10 0000 101011111101,0 001100011111

PW63
clearing shaded bits prevents erroneous command detection

Figure 10. Partial clearing prevents Erroneous Command Detection.

2. Command Decoder and Controller

The Command Decoder and Controller (Figure 11) evaluates the received

commands and adjusts the internally stored waveform parameters if the command is

properly addressed to the attached tactor. It consists of a sequence controller, address

comparator, address reference, and two six-bit registers. The sequence controller is a state

24

machine (refer to Figure 8) that causes the TIC to react only to properly addressed

commands. The address reference maintains a unique address for the individual tactor. The

address comparator provides a "valid address" signal if the command bus holds either the

value stored in the address reference or the "all call" address. The TIC ignores all received

commands until the address comparator detects a valid address. It then updates the stored

value of pulse width or repetition period with every new register command. The pulse

width and repetition period registers operate identically. The registers continuously monitor

the command bus and indicate when the register value matches the bus value. If a command

is received that attempts to set the register to its current value, the command is ignored to

prevent a spurious interruption of the tactor activation cycle. If the difference signal

indicates that the register value must be changed, the new value is latched and the difference

signal is used to clear the latch signal. When the register value is updated, a control signal is

generated to force the Tactor Power Controller to restart the tactor activation cycle so it will

match the new register values. This resetting action ensures that received register

commands are instantly implemented, thus securing tactor activation immediately upon

receipt of a termination (set pulse width to zero) command. Subsequently, when an address

is received, the TIC returns to the monitor condition and waits for the next properly

addressed command set.

25

Command Decoder and Controller

Bus
Data-
Valid

8 bit Command Bus Address
Comparitor

PW
difference

I

J
Address

Reference

Valid Address

Command
Sequence
Controller

i—r

Pulse Width
Register

Latch

1'
Pulse Width

Register Value

Latch ,

1

RP
difference

Repetition Period
Register

▼
Enable
Output

Repetition Period
Register Value

Figure 11. Command Decoder and Controller Elements.

3. Tactor Power Controller

The Tactor Power Controller (Figure 12) converts the input data signals into pulsed

bi-directional current that is applied directly to the tactor by using the switching network

illustrated in Figure 4. A frequency divider reduces the 1 MHz clock to a selectable tactor

oscillating frequency and a 62.5 Hz down counter clock. The oscillator frequency is applied

to the power oscillator to produce alternating current for the tactor. The power controller

uses two synchronized down counters to create the stored wave. Both down counters are

designed to count once from the loaded value to zero, maintaining the zero value once it is

reached. The pulse width down counter includes a status signal indicating when the count

value is equal to zero. The repetition period down counter includes a status signal indicating

when the count is greater than one. The control logic clears or loads both down counters

based on the down counter conditions and the control signal received from the Command

26

Decoder and Controller. These two down counter conditions are used to control tactor

activation by either passing or blocking the oscillation signals to the current switching

network.

Tactor Power Controller
• Pulse Width Enable • Repetition Period

Register Output 1 Register

Pulse Width
Down Counter

Repetition Period
Down Counter

Clock Clock
Divider

62.5 Hz t t
Input

PW Clear V Load
RP Greater
Than 1 Zero

Power
Control

Logic

Osc
Freq

Bi-polar
Power

Oscillator

Activate

Tactor
Output

Power

t
Tactor

.®

Figure 12. Tactor Power Controller Elements.

E. VERILOG® DESIGN VERIFICATION

. Each functional module was simulated and thoroughly tested using the Verilog1

modeling system. First, behavior models were designed for all components and tested to

validate the design descriptions. The components were then assembled to create the

functional modules and tested to ensure proper operation of each module. The functional

modules were then assembled into a behavioral model for the entire TIC. This system

model was fully tested to ensure proper operation of the entire interface before

implementing the behavioral definitions into structural elements. The Verilog® models and

testing "benches" used for system design are included in Appendix A.

27

1. Twelve-Bit Input Shift Register

The twelve-bit input shift register is critical to decoding the serial data stream into

the transmitted command bytes. Twelve bits are required to validate the input stream

because the data packet format is eleven characters long and because the data line is held at

a logic "1." The shift register accepts input from the serial data line, clock, reset, and partial

clear. The shift register provides an output bus containing the value for each of the most

recent twelve bits received by the Serial Data Receiver. Table 7 summarizes the signals

used and produced by the twelve-bit input shift register. On the rising edge of each clock

cycle, a new data bit is latched into the lowest position of the shift register and all other bits

are shifted up one position. When a reset signal is received, all bits on the output bus are

immediately cleared to a logic "0." When a partial clear signal is received, the oldest ten

bits on the output bus are immediately cleared to a logic "0" and the lowest two bits retain

their existing values.

Twelve-Bit Input Shift Register Input and Output

In]
Signal

3Ut

Source

Out
Signal

put
Destination

input data serial data input input bus data latch,
input validity check

partial clear input validity check

clock clock input

reset system

Table 7. Summary of Signals for the Twelve-Bit Input Shift Register.

2. Eight-Bit Data Latch

The eight-bit data latch drives the internal TIC command bus. The data latch

receives input from the shift register output, reset, and a latch signal. Input from the shift

28

register is limited to the data lines representing the data-packet command byte. The output

from the data latch is simply the TIC command bus value. Table 8 summarizes the signals

used and produced by the eight-bit data latch. When a latch signal is received, the data latch

locks the value of each command bit onto the command bus. When a reset signal is

received, all bits on the command bus are immediately cleared to a logic "0."

Eight-Bit Data Latch Input and Output

Input
Signal

input busH

latch

reset

Source

shift register

input validity check

system

Output
Signal

command
bus

Destination

command sequence
controller, address
comparator, pulse
width register,
repetition period
register

* only the bit positions representing the command byte

Table 8. Summary of Signals for the Eight-Bit Data Latch.

3. Input Stream Validity Check

The input stream validity check component continuously evaluates the shift register

output to detect a properly formatted command packet. The validity checker receives input

from the shift register output, reset, and clock. The validity checker produces the latch

signal used by the data latch, the partial clear signal used by the shift register, and a bus

valid signal used by the command sequence controller component of the Command Decoder

and Controller module. Table 9 summarizes the signals used and produced by the input

stream validity checker.

29

Input Stream Validity Check Input and Output

Input
Signal Source

Output
Signal Destination

input bus shift register latch data latch

clock clock input bus valid command sequence
controller

reset system partial clear shift register

Table 9. Summary of Signals for the Input Stream Validity Check.

A format flag is used to create the output latch signal. The format indicator is

continuously generated by evaluating the twelve bits input from the shift register against the

packet format rules. Four specific conditions are required to generate the format flag: a) the

highest bit must be a logic "1" representing either an idle serial input bus or the stop bit from

a previous command, b) the second highest bit must be a logic "0" representing the start bit

for the current command, c) the lowest bit must be a logic "1" representing the stop bit for

the current command, and d) the parity check must yield a logic "1." The parity check is

performed using an XOR of the data bits and the parity bit. The format command may

experience some perturbations immediately following the positive clock edge as the input

bits change because the shift register data is shifted on the rising clock edge. To avoid

creating an erroneous latch command, the latch signal is not generated until the second half

of the clock cycle.

When the latch signal is triggered, a bus valid signal is produced to indicate the

presence of a valid command to the Command Decoder and Controller. This bus valid flag

continues for ten clock cycles, at which time it is cleared. The signal that clears the bus

valid flag is produced by the bus valid signal and the detection of "0 1" in the highest two bit

positions of the shift register. This condition can only exist when the stop bit from the
30

current valid command reaches the second highest position of the shift register. Elimination

of the bus valid signal prepares the command bus for the command byte that might

immediately follow the current command.

After the format flag and the clock produce the latch signal, the command byte is

locked onto the TIC command bus. Then, a partial clear signal clears the highest ten bits in

the shift register to prevent the shifting bits from producing an erroneous command

detection. The partial clear is generated by detecting both the format flag and the bus valid

signal at the same time; a condition that indicates a valid command has been successfully

latched. When the partial clear signal clears the highest ten input bits, the format becomes

incorrect and the format flag becomes "0." When the format flag changes "0," the latch

condition is lost and the latch signal is reset to "0." Additionally, the partial clearing of the

shift register forces the "0 1" transition that will clear the bus valid signal in ten clock cycles.

4. Command Sequence Controller

The command sequence controller is the component in the Command Decoder and

Controller module that acts as the central command processor for the TIC. It is responsible

for interpreting received commands and establishing the ordered tactile stimulus parameters.

The command sequence controller receives the bus valid signal, the valid address signal, the

pulse width difference flag, repetition period difference flag, clock, and reset signal. The

command sequence controller generates an enable output signal used by the Tactor Power

Controller module, a pulse width latch signal for the pulse width register, and a repetition

period latch signal for the repetition period register. Table 10 summarizes the signals used

and produced by the command sequence controller.

31

Command Sequence Controller Input And Output

In]
Signal

3Ut

Source
Output

Signal Destination

command
bus

data latch enable output power control logic

pulse width
difference

pulse width register pulse width
latch

pulse width register

repetition
period
difference

repetition period
register

repetition
period latch

repetition period
register

bus valid input validity check

valid address address comparator

clock clock input

reset System

Table 10. Summary of Signals for the Command Sequence Controller.

When the system reset is applied, the command sequence controller shifts to state 0

and the enable output, pulse width latch, and repetition period latch signals are all set low.

Since all outputs from this component are dependent on the controller operational state, the

state transitions are discussed before the actual output signals are described. With the

exception of a system reset, all output parameters are changed only after both a valid address

has been detected and a register command has been received. Additionally, the outputs may

change many times during the period following a valid register command.

The command sequence controller remains in state 0 until a valid address is present

on the command bus. The valid address signal from the address comparator allows the

command sequence controller to shift to state 1. The command sequence controller remains

in state 1 for all subsequent address commands until a register command (either pulse width

or repetition period) is present on the command bus. The register command causes the

32

sequence generator to shift to state 3. State 2 is a transient condition that is not used by the

command sequence controller and any occurrence of state 2 resets to state 0. The command

sequence controller remains in state 3 until an address is present on the command bus. The

address command and bus valid signal causes the command sequence controller to shift to

state 0. Notably, if the address command is also a valid address, the command sequence

controller will shift from state 0 to state 1 on the next clock cycle.

As mentioned above, all output signal adjustments (except system reset) are made

only when the command sequence controller is in state 3. This discussion refers to a

command that sets either register generically as a "register command" since the pulse width

and repetition period registers operate identically. When a valid register command sets the

pulse width to zero, the command sequence controller immediately clears the enable output

signal, thus immediately stopping tactile stimulus. Typically, a register command is

received that does not match the current register value. This register mismatch triggers two

actions to occur simultaneously. First, it clears the enable output signal, causing the Tactor

Power Controller to clear its counters in preparation for a change in wave shape parameters.

In addition, the register latch signal is produced, ordering the appropriate register to lock the

commanded wave parameter into the storage register. As soon as the new register value has

been latched, the register-difference flag changes to indicate the values now match. This

change in the register-difference flag clears the latch signal and sets the output enable signal,

causing the Tactor Power Controller to restart wave shape generation with the new wave

shape parameters. In the event that a register command is received that matches the current

register value, the latch signal is not needed and the output enable signal does not cycle.

33

Effectively, the matching register command is ignored since it provides no change to the

current operating condition.

5. Address Comparator

The address comparator provides indication when the valid command byte is an

address command that matches either the address reference or the all call address. Input to

the address comparator comes from the command bus and the address held in the address

reference. The address comparator produces the valid address signal that is used by the

command sequence controller. Table 11 summarizes the signals used and produced by the

address comparator.

Address Comparator Input And Output

Input
Signal

command
bus

address

Source

data latch

address reference

Output
Signal

valid address

Destination

command sequence
controller

Table 11. Summary of Signals for the Address Comparator.

6. Address Reference

The address reference maintains the address assigned to the attached tactor. The

input source for the prototypical implementation comes from external jumper connections

on the TIC. The output is a buffered reflection of the settings. Table 12 summarizes the

signals used and produced by the address reference.

34

Address Reference Input And Output

Input
Signal Source

Output
Signal Destination

input address address input pads address address comparator

Table 12. Summary of Signals for the Address Reference.

7. Pulse Width Register

The pulse width register stores the most recent pulse width setting received by the

TIC. This setting is used by the Tactor Power Controller module to create the stimulus

waveform. The pulse width register receives input from the command bus, a latch signal

from the command sequence controller, and the system reset. The register produces an

output pulse width value used by the pulse width down counter and a pulse width difference

signal used by the command sequence controller. Table 13 summarizes the signals used and

produced by the pulse width register.

Pulse Width Register Input And Output

Inj

Signal
DUt

Source
Out

Signal
put

Destination

command
bus*

data latch pulse width
value

pulse width down
counter

latch command sequence
controller

pulse width
difference

command sequence
controller

reset system

* only the bit positions representing the embedded register value

the stor

output i

Table 13. Sum

The pulse widt

ed six-bit valu

s used by the c

mary of Signals for the Pulse Width Register.

ti register continuously provides a difference signal indicatin

z is different from the lowest six bits on the command bu

ommand sequence controller to regulate the latch signal and

35

g when

5. This

to reset

waveform generation by the Tactor Power Controller. When a latch signal is received from

the command sequence controller, the pulse width register locks the timing value held in the

lowest six bits of the command bus into its storage register. When latching is complete, the

difference signal indicates a match, providing a feedback signal to the command sequence

controller. When a reset signal is received, the pulse width register clears all output bits to a

logic "0."

8. Repetition Period Register

The repetition period register stores the most recent repetition period setting received

by the TIC. This setting is used by the Tactor Power Controller module to create the

stimulus waveform. The repetition period register receives input from the command bus, a

latch signal from the command sequence controller, and the system reset. The register

produces an output repetition period value used by the repetition period down counter and a

repetition period difference signal used by the command sequence controller. Table 14

summarizes the signals used and produced by the repetition period register.

Repetition Period Register Input And Output

Signal
In DUt

Source

Out
Signal

put
Destination

command
bus*

data latch repetition
period value

repetition period
down counter

latch command sequence
controller

repetition
period
difference

command sequence
controller

reset system

* only the bit positions representing the embedded register value

Table 14. Summary of Signals for the Repetition Period Register.

36

The repetition period register continuously provides a difference signal indicating

when the stored six-bit value is different from the lowest six bits on the command bus. This

output is used by the command sequence controller to regulate the latch signal and to reset

waveform generation by the Tactor Power Controller. When a latch signal is received from

the command sequence controller, the repetition period register locks the timing value held

in the lowest six bits of the command bus into its storage register. When latching is

complete, the difference signal indicates a match, providing a feedback signal to the

command sequence controller. When a reset signal is received, the repetition period register

clears all output bits to a logic "0."

9. Power Control Logic

The power control logic component controls implementation of the tactile stimulus.

Input to the power control includes an enable output signal, a pulse-width-equals-zero

signal, and a repetition-period-greater-than-one signal. The power control logic produces an

enable power signal, a clear counter signal, and a load counter signal. Table 15 summarizes

the signals used and produced by the power control logic.

37

Power Control Logic Input And Output

Input
Signal

enable output

pulse width
equals zero

repetition
period
greater than
one

Source

command sequence
controller

pulse width down
counter

repetition period
down counter

Output
Signal

enable power

clear counter

load counter

Destination

power oscillator

pulse width down
counter, repetition
period down counter

pulse width down
counter, repetition
period down counter

Table 15. Summary of Signals for the Power Control Logic.

When the enable input signal from the command sequence controller is not enabled,

the power control logic provides a clear signal to both down counters. The clear signal

locks both counters at zero. When a pulse-width-equals-zero signal is present, the power

control logic maintains the enable-power at logic "0," causing the power oscillator to block

the oscillation signals from reaching the current switching network. When the repetition-

period-greater-than-one signal is low, the power control logic signals the down counters to

reload the stored register values on the next clock cycle.

10. Power Oscillator

The power oscillator controls transmission of the signals that drive the switches in

the current switching network. Input to the power oscillator is an enable output signal and

the oscillation frequency. The power oscillator produces the signals that enable the current

switching network to create the bi-directional current for the attached tactor. Table 16

summarizes the signals used and produced by the power oscillator.

38

Power Oscillator Input And Output

Input
Signal

enable power

oscillation
frequency

Source

power control logic

clock divider

Output
Signal

power switch
setl

power switch
set 2

Destination

current switching
network

current switching
network

Table 16. Summary of Signals for the Power Oscillator.

The enable power signal controls the passage or blocking of the oscillation signals.

When enable power is high, the power oscillator passes the oscillation frequency signals to

the current switching network causing the tactors to vibrate. When enable power is low, the

oscillation signals are blocked and there is no tactile stimulation. The oscillation frequency

is complemented to provide alternating signals that produce the bi-directional switching

characteristic needed for the current switching network.

11. Pulse Width Down Counter

The pulse width down counter provides the timing that defines the activation interval

for the tactor. Input to the pulse width down counter is the stored pulse width value, a load

counter signal, a clear counter signal, and the counter clock. The pulse width down counter

produces the pulse-width-equals-zero signal. Table 17 summarizes the signals used and

produced by the pulse width down counter.

39

Pulse Width Down Counter Input And Output

Input
Signal Source

Output
Signal Destination

pulse width
value

pulse width register pulse width
equals zero

power control logic

count clear power control logic

count load power control logic

clock clock divider

Table 17. Summary of Signals for the Pulse Width Down Counter.

When the count clear signal is present, the pulse width down counter immediately

clears its count to zero and produces the pulse-width-equals-zero signal. The count clear

signal takes precedence over all other inputs. When the count load signal is present, the

counter loads the value that is stored in the pulse width register on the next clock cycle. The

clock signal is provided by the 62.5 Hz output of the clock divider.

12. Repetition Period Down Counter

The repetition period down counter provides the timing that defines the repetition

interval for the tactor. Input to the repetition period down counter is the stored repetition

period value, a load counter signal, a clear counter signal, and the counter clock. The

repetition period down counter produces the repetition-period-greater-than-one signal.

Table 18 summarizes the signals used and produced by the repetition period down counter.

40

Repetition Period Down Counter Input And Output

Input
Signal

repetition
period value

count clear

count load

clock

Source

repetition period
register

power control logic

power control logic

clock divider

Output
Signal

repetition
period greater
than one

Destination

power control logic

Table 18. Summary of Signals for the Repetition Period Down Counter.

When the count clear signal is present, the repetition period down counter

immediately clears its count to zero and clears the repetition-period-greater-than-one signal.

The count clear signal takes precedence over all other inputs. When the count load signal is

present, the counter loads the value that is stored in the repetition period register on the next

clock cycle. The clock signal is provided by the 62.5 Hz output of the clock divider.

13. Clock Divider

The clock divider uses a 14-stage counter to generate the frequency signals for tactor

oscillation and proper down counter timing. Input to the clock divider is from the system

clock and the reset signal. Output from the clock divider includes signals at 250 Hz, 125

Hz, and 62.5 Hz. The 1 MHz system clock is divided by two at each stage of the clock

divider. Table 19 summarizes the signals used and produced by the clock divider.

41

Clock Divider Input And Output

Input
Signal Source

Output
Signal Destination

clock clock input 62.5 Hz pulse width down
counter, repetition
period down counter

reset System 125 Hz power oscillator

250 Hz power oscillator

Table 19. Summary of Signals for the Clock Divider.

F. STRUCTURAL COMPONENT DESIGN

After completing the behavioral design, each component was converted to a circuit

using logic gates. Most of the design conversion was very straightforward using the digital

design techniques described in Reference 1. To ensure proper operation of the state

machine in the command sequence controller, many of the advanced state-machine design

techniques presented in Reference 8 were used.

The structural design process was performed in two distinct steps, basic structural

implementation and component optimization for minimum power and size. The initial

structural designs were fully tested using Verilog® models; the model source code is

included in Appendix A. The optimized structural designs were iteratively developed and

tested using SPICE. The final circuit schematics are included in Appendix B and the SPICE

models are included in Appendix C.

The circuit optimization techniques are illustrated below and the design of each

component is described in the following subsections. Specific optimization efforts are

discussed with each affected component.

42

1. Structural Circuit Optimization

Two methods used to reduce the power consumption and physical layout area are

logic function minimization and negative logic. Function minimization uses logic analysis

to determine the smallest sum-of-products equation to realize a given function. Negative

logic results in reduced power consumption by reducing the total number of transistors.

Both techniques require less layout area on the microcircuit since they result using fewer,

smaller logic components. Figure 13 illustrates two possible structural implementations of

the address comparator. The circuit on the left uses conventional logic while the circuit on

the right makes extensive use of negative logic. Table 20 summarizes the reduction in

layout area, power consumption, and propagation delay. A very noticeable advantage of

using negative logic is the improved signal propagation speed. The improved response time

comes primarily from reducing the number of transistors in the signal path.

Figure 13. Alternate Structures for Realizing the Address Comparator.

43

Area [^im2] Transistors Delay [nS]*

Conventional Logic 29,500 128 2.96

Negative Logic 25,900 112 1.88

Difference 3,600 16 1.08

% Difference 12.2% 12.5% 36.5%

* Delay time was calculated using SPICE to simulate the actual CMOS
FET implementation of each circuit.

Table 20. Comparison of Alternate Logic Designs.

2. Twelve-Bit Input Shift Register

The twelve-bit shift register consists of twelve D-flip/flops wired in series. All

flip/flops share a common clock signal that is driven directly from the input clock signal.

The system reset drives the clear signal for the lowest two D-flip/flops. The highest ten

flip/flops are cleared by either the system reset or the partial clear signal that comes from the

input validity checker. The schematic for the optimized circuit is included as Figure 99 of

Appendix B.

3. Eight-Bit Data Latch

The eight-bit data latch consists of eight D-flip/flops wired in parallel. All flip/flops

share a common latch signal provided by the input validity checker. The system reset drives

the clear signal for all of the D-flip/flops. The schematic for the optimized circuit is

included as Figure 100 of Appendix B.

4. Input Stream Validity Check

The input stream validity checker consists of a packet-format section, latch-signal

driver, bus-data-valid driver, and partial-clear driver. The packet-format section determines

if the stream of input bits is properly formatted by ANDing the two stop bits, the parity

44

indicator, and the complement of the start bit. The parity indicator is simply an XOR of all

data bit positions with the parity bit position. The latch signal is created when the format is

correct and the clock signal is low. The bus data valid signal is driven by a D-flip/flop that

stores the format signal on the latch signal upward transition. The bus data valid signal is

cleared by either the system reset or when a "0 1" logic combination is detected in the two

highest bit positions of the shift register and the bus data valid signal is set. The partial clear

signal is generated when the packet format is correct and the bus data valid signal is set.

The schematic for the optimized circuit is included as Figure 101 of Appendix B. In

hindsight, it may have been more efficient to use an S/R latch for the data bus valid signal.

This option was not considered during the design evaluation but should be attempted in the

next TIC version.

5. Command Sequence Controller

The command sequence controller consists of a state machine, two register latch

drivers, and the enable output S/R latch. The operating state is stored in a pair of D-

flip/flops. The logic that drives the state machine was derived using transition and output

analysis detailed in Chapter 7 of Reference 8. The implemented transition logic prevents

hazards and race conditions. The design also recovers from any occurrence of the undefined

state 2. The pulse width and repetition period latch signals are driven by the receipt of a

register command that does not match the currently stored value. The enable output latch is

set any time the state machine is in state 3 and there is a valid register command on the

command bus. The enable output latch is reset for any change in the pulse width or

repetition period register values. The enable output signal is also immediately cleared when

45

a system reset is detected or when a valid, zero pulse width command is detected. The

schematic for the optimized circuit is included as Figure 102 of Appendix B.

6. Address Comparator

The structural design for the address comparator consists of an all call detector and

an equality test for the reference address. The all call detector simply indicates when the all

call command, "0111111 1," is present on the command bus. The address equality test

uses an XNOR for each bit position to determine if the command bus matches the provided

address reference. The schematic for the optimized circuit is included as Figure 103 of

Appendix B.

7. Address Reference

The structural design for the address reference in this initial prototype consists

simply of buffers from the TIC input pins. No schematic diagram is included for this

component.

8. Pulse Width Register

The structural design for the pulse width register consists of six D-flip/flops wired in

parallel and an equality test to indicate a difference between the command bus and the

stored pulse width value. All flip/flops share a common latch signal provided by the

command sequence controller. The system reset drives the clear signal for all of the D-

flip/flops. The equality test uses an XOR for each bit position to determine if the command

bus differs from the stored pulse width value. The schematic for the optimized circuit is

included as Figure 104 of Appendix B.

46

9. Repetition Period Register

The structural design for the repetition period register consists of six D-flip/flops

wired in parallel and an equality test to indicate a difference between the command bus and

the stored repetition period value. All flip/flops share a common latch signal provided by

the command sequence controller. The system reset drives the clear signal for all of the D-

flip/flops. The equality test uses an XOR for each bit position to determine if the command

bus differs from the stored repetition period value. The schematic for the optimized circuit

is included as Figure 105 of Appendix B.

10. Power Control Logic

The structural design for the power control logic consists of a single inverter. This

component routes the appropriate signals between other components in the TIC circuit. The

output from the two down counters was modified to eliminate the need to invert their signals

before sending them to the other components. The schematic for the optimized circuit is

included as Figure 106 of Appendix B.

11. Power Oscillator

The structural design for the power oscillator consists of a dual-path switch and four

signal amplifiers. The dual-path switch will either block or pass the oscillation frequency

and its complement. When the oscillation signal is passed, the four drivers provide

sufficient current to activate the switch pairs in the current switching network. The

schematic for the optimized circuit is included as Figure 107 of Appendix B.

12. Pulse Width Down Counter

The structural design for the pulse width down counter consists of six D-flip/flops

configured as a down counter and a comparison circuit to indicate when the counter value is

47

not equal to zero. The down counter has an input selector that shifts operation between

down counting and loading the value stored in the pulse width register. All flip/flops share a

common clock signal provided by the clock divider as a timing reference. The counter

output is continuously tested to indicate when the value is not equal to zero. The counter

reset circuit includes a function that stops the down counter when it reaches zero. The

counter is also reset by the count clear signal from the power control logic. The schematic

for the optimized circuit is included as Figure 108 of Appendix B.

13. Repetition Period Down Counter

The structural design for the repetition period down counter consists of eight D-

flip/flops configured as a down counter and a comparison circuit to indicate when the

counter value is not greater than one. The down counter has an input selector that shifts

operation between down counting and loading the value stored in the repetition period

register. When loaded, the repetition period value is stored in the upper eight bits of the

counter and the lowest two bits are set to zero. All flip/flops share a common clock signal

provided by the clock divider as a timing reference. The combination of the two extra bit

positions and the same clock frequency causes the repetition period down counter to operate

at a time interval that is four times longer than that of the pulse width down counter. The

counter output is continuously tested to indicate when the value is not greater than one. The

counter reset circuit includes a function that stops the down counter when it reaches zero.

The counter is also reset by the count clear signal from the power control logic. The

schematic for the optimized circuit is included as Figure 109 of Appendix B.

48

14. Clock Divider

The structural design for the clock divider consists of fourteen D-flip/flops

configured as an up counter. All flip/flops share a common clock signal that is driven

directly from the input clock signal. The up counter continuously acts as a frequency

divider that provides two oscillation frequencies and the down counter timing reference.

The available oscillation frequencies are 250 Hz and 125 Hz. The down counter timing

reference is 62.5 Hz. The system reset drives the clear signal for all of the D-flip/flops. The

schematic for the optimized circuit is included as Figure 110 of Appendix B.

G. ADVANCED DESIGN FEATURES

Several features of the initial TIC design provide enhanced system performance.

The first two features were included as enhancements to the minimum design specification

because they provide improved functionality while coupling easily with the conceptual

operations. The third advanced feature, an onboard reset, was included to ensure that the

TIC establishes a consistent initial condition when it is first energized. The final two

features were added for chip testing and evaluation with various tactile transmitters.

1. Multiple Command Packet Addressing

The operating-state transition definitions allow a command byte stream that includes

multiple TIC addresses. This feature allows a register command to be transmitted to several

tactors simultaneously. This capability can be used to reduce the volume of data transmitted

on the serial communication wire from the micro-controller. When commands are sent to

numerous tactors in this fashion, all tactors activate with a single, synchronized wave-shape.

49

2. All-Call Address

The command value "0 1 1 1 1 1 1 1" is reserved as an All-Call address that

produces a valid address response for all TICs. This feature is primarily intended to enable

rapid termination of all tactile stimuli. This address can also be used to test the entire

communication array.

3. Dual Reset Circuit

The analog response of the CMOS circuit components is used to produce an initial

reset signal for the first 200 nS of TIC operation. The initial reset forces all TIC elements to

establish a consistent condition when the circuit is energized. Included in the system-reset

circuit is a selectable, low-voltage reset. This reset element is included to protect the system

from erratic response caused by low input voltage. The low voltage feature can be disabled

using an external TIC jumper, if necessary, for circuit testing.

4. Selectable Oscillator Frequency

An input jumper allows selection between the two tactor-oscillation frequencies: 125

Hz and 250 Hz. This selection allows the TIC to be used with different tactors. These two

frequencies were selected because they are available in the clock divider and because they

reasonably match the input requirements of the tactors being considered for use in the

prototype system.

5. Selectable Address

By including the TIC address as an external input, a single TIC design can be used

for all tactors in the communication array. This feature allows the greatest flexibility for

prototype testing, since it allows a single "intelligent tactor" to function in every possible

50

array position. A similar approach will likely be used in future versions to limit production

and inventory requirement to a single TIC/tactor assembly.

H. ANIMATION OF TACTOR INTERFACE CHIP OPERATIONS

As a tool to explain TIC response to command bytes, an operating animation was

developed that illustrates the changes that occur in the TIC registers and counters as a string

of commands is received. A more detailed explanation of the animation program is

contained in Appendix D.

1. TIC Visual Representation

Figure 14 shows the graphical representation of two intelligent tactors in a tactile

array. The dark gray rectangles represent the tactors. Each is labeled with its address value.

The number at the bottom of each column represents the register value for the pulse width or

repetition period. The column represents the value in the down counter associated with each

register. The horizontal bar across the bottom represents simulation time and proceeds

steadily from left to right. The rectangular bubbles above the time line are commands that

will be issued when the time reaches their position.

51

Tactile Interface Demonstration

PW

.:.'<!■"-

A127

RP PW RP

P33 :^ R17

0 0

A2

^

R3

time

AO

Figure 14. Tactile Interface Animation Basics.

2. Animation Color Scheme

Figure 15 shows the animation in progress. The tactor rectangles change in color to

represent the state of the Command Decoder and Controller. When a valid address is

received, the TIC shifts to state "B" and the tactor color changes to yellow. When a register

command is received by a tactor in state "B," the register is set to the commanded value, the

TIC shifts to state "C," and the tactor color changes to red. When any address is received by

a tactor in state "C," the TTC shifts to state "A" and the tactor color changes back to gray.

The pulse width down counter value is represented by a green column in the area below the

"PW" label. The repetition period down counter value is represented by a blue column in

the area below the "RP" label. During operation, the green column drops four times as fast

as the blue column. As long as the green pulse-width column is not zero, the associated

tactor vibrates. When the green pulse-width column reaches zero, the vibration stops.

52

When the blue column is not greater than one, both down counters load the stored register

value. Thus, when a zero repetition period is assigned, the pulse width column reloads on

every clock pulse and does not decrease in value. When the repetition period register is

greater than zero, both counters decrease until they are reloaded at the repetition period

down counter value of one.

Tactile Interface Demonstration

RP PWRP

i I
A2 R3 AO

time

Figure 15. Tactile Interface Animation in Progress.

53

54

IV. TACTOR INTERFACE CHIP VLSI IMPLEMENTATION

In preparation for the VLSI implementation of the Tactor Interface Chip, the specific

system priorities must be examined. These priorities then work together to define the

CMOS FET size. After determining the optimum FET size for the application, the elements

must be built to support basic logic functions. These logic elements are then combined to

form the larger components. The components are then assembled into the functional

modules and, finally, into the composite system. After the chip input and output are added,

the chip is ready for comprehensive testing and fabrication. This chapter covers the entire

VLSI implementation process.

A. COMPETING VLSI DESIGN CONSTRAINTS

During VLSI design, many requirements are juxtaposed. High speed transistors are

physically larger and consume more power. Conversely, minimum sized transistors require

the least amount of power but their speed may be insufficient when driving large

interconnect lines or numerous down-stream components. These factors were balanced to

meet the design requirements of the Tactor Interface Chip.

1. Size

Funding limits forced microchip size to be a primary constraint. Chip size primarily

bounds the number of circuit components because component interconnections consume the

majority of VLSI layout area. This sharply limited circuit complexity and fundamentally

affected many of the design decisions made in the previous chapter.

2. Power

Each TIC must draw minimum current from the battery-powered system since the

tactile interface is a stand-alone bridge between the information source and the human user.
55

Using the smallest possible CMOS FETs throughout the circuit minimizes total power

consumption. Aggressively simplifying the logic structure further reduced power

requirements while increasing response speed.

3. Speed

Small transistor size adversely influences response time. Minimum transistor size is

sufficient at a 1 MHz clock speed unless long interconnects or several components must be

driven. Individual elements were resized based on their output loading.

B. CMOS FET TRANSISTOR SIZING

1. Determining PFET Size From NFET Size

Based primarily on power considerations, minimum size CMOS FETs were

examined to determine their suitability for the TIC application. Beginning with the absolute

minimum transistor width of 3 Jim, the response of an inverter was evaluated. When sizing

FETs the mobility of the charge carriers must be considered. PFET width must be

significantly larger that NFET width to balance system output since the majority carrier for

NFETs are electrons (high mobility) and the majority carriers for PFETs are holes (low

mobility). Figure 16 shows the effect of using different size PFETs with a minimum size

NFET. The ideal sizing produces an inverted output of 2.5 volts as the input sweeps

through 2.5 volts. By examining Figure 16, a PFET width of 7 \im most closely achieves

the ideal condition. However, a more conventional PFET width to NFET width ratio of 2.0

was used for this VLSI layout; making PFETs 6 \\m wide. Checking the response in Figure

16 shows that a width of 6 |im is still very close to the ideal response.

56

PFET Size Evaluation for 3 um NFET

PFET width
o 4 urn
x 5 um
□ 6 um
0 7 um
v 8 um

2 3
input voltage [V]

Figure 16. Inverter Response for Various PFET Widths.

2. Basic Response Timing

Having determined the PFET size needed with a minimum size NFET, response

timing had to be verified to ensure the system would transmit the signals quickly enough to

support a 1 MHz clock speed. This measurement was accomplished by simulating a series

of inverters and measuring transmission delay between two inverters near the series end as

illustrated in Figure 17. Figure 18 shows the inverter response for the delay circuit and

Table 21 provides the actual delay values calculated from the simulation.

57

Figure 17. Delay Circuit for Measuring Inverter Response.

Inverter Transmission Delay

0.4 0.6 0.8 1.2 1.4
time [nS]

Figure 18. Inverter Transmission Response for Delay Circuit.

Output Transition Delay

High to Low 0.2564 nS

Low to High 0.2240 nS

Table 21. Inverter Delay Summary.

58

B. LOGIC ELEMENT DESIGN

Using a 6 |om PFET width and 3 urn NFET width, the basic logic elements were

designed to support VLSI implementation of the structural TIC design. Appendix E

contains the specific design and evaluation data regarding all logic elements. Table 22

presents a summary of logic element response for each design. The delay values were

obtained while simulating an output loading of 0.1 pF; equating to 4 down-stream

components. When compared to the 500 nanosecond half-cycle of the 1MHz clock, even the

worst transmission delays allow numerous components to be connected in a series layout

while still providing adequate stabilization time.

Component Transistors Slowest Delay Peak Power

Inverter 2 0.83 nS 2.1 mW

2-input NAND 4 1.33 nS 2.3 mW

3-input NAND 6 1.69 nS 2.7 mW

4-input NAND 8 2.22 nS 2.7 mW

2-input AND 6 1.31 nS 2.3 mW

2-input NOR 4 1.51 nS 1.6 mW

3-input NOR 6 2.10 nS 1.2 mW

2-input OR 6 1.47 nS 2.5 mW

2-input XOR 12 1.68 nS 3.2 mW

2-input XNOR 12 1.68 nS 3.2 mW

D flip-flop with
nClear

24 3.42 nS 3.4 mW

Table 22. Component Design Summary.

C. COMBINED LOGIC COMPONENT CONSTRUCTION

The storage registers, down counters, shift registers, and other components were

developed using the structural designs presented in Appendix B. The logic element layouts

59

were combined to create rows of elements with a common power and ground line. This

configuration produced the most compact layout of the larger components. The logic

elements were arranged to provide the shortest connection distance between elements and

signals were routed primarily on the first metal layer or the polysilicon layer. Signals that

extended beyond adjoining elements were typically routed vertically on the second metal

layer, then routed horizontally on the first metal layer, and again vertically on the second

metal to their destination. This routing direction segregation reduced wasted space between

component rows and helped to maintain a very tight layout.

E. MODULE ASSEMBLY

The components were arranged on the VLSI layout area to minimize the distance

between signal generation and signal use. Sets of signals were routed together to maintain

an orderly structural layout. The internal command bus was routed between the components

that accessed its values, minimized the bus size and its drive loading. The modules were

built to obtain a consistent length. The modules were then attached to the common power

and ground buses running vertically along both sides.

F. INPUT AND OUTPUT CONSIDERATIONS

Movement of input signals to the TIC and output signals to the current switching

network required an arrangement of input and output pads. These pads are bonded to tiny

wires that connect the chip to the DIP package. A power and ground ring encircle the chip

just inside the connection pads. These rings provide voltage surge protection through diodes

designed into the I/O pad structure. In addition to the power and ground pads that feed the

outer rings and the chip components, three pad types are included in this design.

60

A standard input pad is used to translate the data and clock inputs onto the lines

connecting them to the TIC circuit. These pads are comprised of two inverters that act as a

signal buffer and amplifier.

A standard output pad is used to convert the TIC output into a signal strong enough

to drive the current switches. Again, these pads are made using two inverters that are

specifically sized to provide the proper amount of current to activate the switching network.

A custom input pad was developed to act an input jumper signal. The pad was held

high through a diode and resistor combination, providing a logic "1" to the circuit unless the

pad was jumped to ground. When this type of pad was grounded, a logic "0" was provided

to the circuit. These pads were used for creating the address assignment jumpers and the

frequency and reset selection jumpers.

G. COMPLETE TACTOR INTERFACE CHIP

When the pads were all combined with the entire system layout, the TIC was

complete. Figure 19 shows the layout for the entire TIC. Using the layout map provided in

Figure 20, the relative size and placement of each component is clearly visible.

61

Figure 19. Completed Tactor Interface Chip VLSI Design.

62

imi'v. Address Assignment
Jumpers (6-3)

Si

!■■' HI

!ii>

jjjmijrtOTr

m
iOTOTXn

jjoxnuirEmi

IB"

jg.i,

?<-

„I.^*!

fi

■i i:

' I..V3T

Address Assignment
Jumpers (2-0)

nsj"

3
0L
c
HI

s

VI I 6 IC!|

Serial Data Receiver

12-bit
Input Shift Register

Input Validity Check

8-bit Data Latch

IjJJiU.UJIltll-U-UlLUlWAJJJJUIW-

pmnrrrrrmmrm-nTnTiTTTf

Um

Command Decoder and Controller

Address
Comparitor

Command
Sequence
Controller

Pulse Width
Register

Repetition Period
Register

iü

uilj

Reset [™ :tp lie: Ü|j

Tactor Power Controller

Pulse Width
Down Counter

Repetition Period
Down Counter

Clock Divider

'•iWi' Tactor Switching Signals
(Output Drivers)

rat. MAIL ,
affiifjjptj

f"f;r-

assg !ms

Reset and
Frequency Control

Figure 20. Layout Map of the Tactor Interface Chip VLSI Design.

i-rrrrrriTT-iviTTHir: IM
""TU

»Pi
If:!

gii

m

a, u o ■:

H. COMPREHENSIVE SYSTEM TESTING

When the entire layout was complete, several simulations were performed on the

extracted model. These simulations each ran for approximately one day and generated

nearly one gigabyte of data. The results presented in Figure 21 illustrate that the TIC circuit

functions as designed and produces the alternating switch control signals required to drive

the tactor current network.

63

busValid
Complete TIC Extracted VLSI Simulation

5-

4- -

3 -

2 -

1

0^ i i 1 1—^

countClear

pwrla

pwr2a

5u lOu 15u 20u 25u

Figure 21. Simulation Results from the Complete TIC Design.

64

V. PARALLEL PORT DATA MODULATOR

With the VLSI layout complete and submitted for fabrication, chip testing and

demonstration became the highest priority. Once fabricated, the most realistic test would be

to connect the TIC to an actual serial communication line and measure the current switching

signals produced as a result of issuing command bytes to the TIC. Additionally, an

apparatus that could drive the TIC in a manner similar to its intended implementation would

serve as a demonstration platform for the completed tactile interface.

The general notion of using a standard computer to produce the serial bit stream

required for TIC operation was appealing for many reasons. The primary motivation for PC

use was the portability of such a system; system design could allow using any PC, reducing

system unique equipment to a small hardware component and the tactile array.

Additionally, the parallel port on a computer closely represents the operation of a

microprocessor data bus. This similarity to a data bus provides a level of design abstraction

that would ease adaptation of the command modulator to work with any micro-controller.

This chapter presents many of the aspects in the development, fabrication, and

testing of the Parallel Port Data Modulator. After introducing the conceptual design, parallel

port transfer characteristics and modulator design specifics are discussed. Next, the circuit

board layout and manufacture for the modulator are included. The command software

driver is introduced and, finally, system testing and modifications are discussed.

A. CREATING A SERIAL COMMAND STREAM

A flexible and effective method to issue commands to the intelligent tactor is to

write a computer program that presents the byte command to a modulator attached to the

computer parallel port. The modulator, shown conceptually in Figure 22, reads the byte
65

presented at the parallel port and latches it into a transmission buffer. The hardware

interface then signals the computer that the command has been read to allow computer

processing for the next command byte. The modulator transmits the command using the

required serial data packet format. TIC synchronization and timing is provided using the 1

MHz clock.

Hardware
Interface

Data Latch,
Equality, and
Parity Logic

Output Control Data Select

Figure 22. Command Modulator Conceptual Design.

B. PARALLEL PORT INTERFACING AND CONTROL

The parallel port on a computer is used to communicate data one byte at a time to an

attached peripheral. Reference 1 contains an extensive description of parallel port

66

Communications. The transfer of data through the parallel port is defined by IEEE standard

1284, "Standard Signaling Method for a Bi-directional Parallel Peripheral Interface for

Personal Computers." The parallel port consists of 17 signal lines that are divided into three

categories: data (8 lines), control (4 lines), and status (5 lines). The remaining eight lines are

ground connections. Table 23 summarizes the signals with their descriptions and connector

pin assignments. Figure 23 illustrates the parallel port connector and pin numbering scheme

as viewed on the back of a computer.

Category Name Pin Direction Description
Data dataO 2 In/Out Active high. Data transmission

lines. Operate only in output
direction for some communication
modes.

datal 3
data 2 4
data 3 5
data 4 6
data 5 7
data 6 8
data 7 9

Control nStrobe 1 Out Active low. Indicates valid data is
on the data lines.

nAutoLF 14 Active low. Instructs printer to
automatically insert a line feed for
each carriage return.

nlnit 16 Active low. Resets device.
nSelectln 17 Low signals device it is selected.

Status nError 15 In Low indicates an error exists.
Select 13 High indicates device is online.
PaperEnd 12 High indicates printer is out of

paper.
nAck 10 Low indicates last byte was

received.
Busy 11 High indicates device is busy.

Table 23. Standard Parallel Port Signal Definitions and Pin Assignments.

67

boooooooooooo
oooooooooooo

14 ' 25^

Figure 23. Parallel Port Connector with Pins Numbered.

Parallel port data transfer follows a specific procedure for every byte sent to the

attached peripheral. First, the port status is checked to ensure that the peripheral is not busy

and no errors are present. The data byte is then placed onto the data pins and the strobe is

activated to indicate that the data on the data lines is valid. The strobe is held active until an

acknowledgement is received from the peripheral that indicates data receipt. This process

continues until all bytes have been successfully transmitted.

C. MODULATOR DESIGN SPECIFICS

The hardware interface of the command modulator uses the eight data lines, strobe

signal, acknowledge signal, and busy status. When the computer presents a byte to the

modulator, it issues a data strobe. The modulator detects the strobe and activates the busy

flag to prevent other bytes from being transmitted. Then, the command is latched into the

buffer and, when the buffer value matches the input command, an acknowledgement signal

is sent to the computer. The modulator then cycles through the data packet format using an

internal state machine. Serial bits are placed on the TIC communication bus on the negative

clock transition to ensure they are stable when latched at the TIC on the positive clock cycle.

The start bit is transmitted first, followed by the command byte proceeding from the most

significant bit to the least significant bit. The parity bit and stop bit are then sent,

completing the cycle. After the stop bit is sent, the busy signal is cleared to allow the next

byte to be latched into the modulator buffer.

68

The logic functions for the command modulator were created using Programmable

Logic Devices. PEEL 18CV8P PLDs were used to implement the logic functions because

they were available in the research laboratory. The choice to use these chips directly

influenced the method of implementing the conceptual design shown in Figure 22. The

design requires the buffer to produce an equality function and parity calculation. The

equality function triggers the acknowledgment signal that is fed back to the computer.

Unfortunately, the 18CV8P chips have insufficient logic capacity to perform all of these

functions on a single chip. In fact, to create a discrete buffer, equality, and parity functions

requires three individual chips. However, these functions can be realized with two PLDs by

creating a 4-bit latch that includes partial equality and parity calculations. Using equality

and parity inputs, the two cascaded chips will perform all three functions.

A more detailed discussion of the Parallel Port Data Modulator design is included in

Appendix F. The appendix contains the Venlog modeling source files and the ABEL

logic definitions used to create the required JEDEC format data files for PLD programming.

D. CREATING A PRINTED CIRCUIT BOARD LAYOUT

The Parallel Port Data Modulator physical characteristics were generally defined by

the system goals. The command modulator needed to be a small, self-contained device that

connected directly to a computer parallel port thus compact board size was a high priority.

The basic component layout was conceptualized as the PLD programs were being

developed. Figure 24 illustrates the layout for the command modulator components. The

system consists of a parallel port connector, four 20-pin DIP sockets, one 8-pin DIP socket,

a wiring harness connector, and power connections. The complete system measures about

2V2 inches by 2V2 inches and uses a battery pack of four AA batteries.

69

+5V«

gnd •
1MHz
clock ■ ♦♦•

••••••
Connector
to Tactors

)8 to 1 Multiplexer > State Control

> 4 bit Register > 4 bit Register

■■■■■■■■■■■■■ ,
Parallel Port Connector

Figure 24. Parallel Port Modulator Component Layout.

The PLD logic programs were developed first to ensure the required functions

would fit on four chips. After the chips performed as required, adjustments to the chip pin

assignments and design were made to support the desired circuit board layout and to

simplify signal routing on the board. The signal and power lines were then routed on each

layer of the two-layer board. Figure 25 and Figure 26 show the layout and routing of the

manufactured circuit board for the top and bottom layers, respectively. For consistency,

power and ground were routed exclusively on the bottom layer and data signals were routed

primarily on the top layer. In hindsight, a better layout plan would have considered the

solder connections for each component to determine which layer would be best for the

signal to reach the pad. Soldering was typically easier to perform for bottom-layer signal

pads because the wiring harness connector and DIP sockets were mounted to the top layer.

70

■ ««•

-•••••

^
/

\^:

A

^

"\

Figure 25. Parallel Port Modulator Top Layer Routing.

Figure 26. Parallel Port Modulator Bottom Layer Routing.

71

E. PRINTED CIRCUIT BOARD MANUFACTURING

Prototype printed circuit boards can be manufactured from a copper-coated insulator

board by removing the copper from areas around the desired conductors. Two processes

exist for copper removal: chemical etching and machining. The chemical removal process

uses a resistive mask to protect the desired conductor areas while immersing the board in a

chemical to remove the copper in the unprotected areas. The machining process uses a

digitally controlled milling machine to mechanically remove the copper around the

conduction paths to isolate the conductor from the remainder of the board. The chemical

process was used in the first attempts to manufacture the Parallel Port Data Modulator. The

rather crude masking methods used in the process produced marginal results. The milling

process was then used with much greater success.

To produce a circuit board using the machining process, a GERBER data file

containing the layout and routing data is necessary. The GERBER file is produced using

circuit board layout software. EasyTrax (ver 2.06) by Protel International Pty. Ltd. was used

to layout and route the command modulator. When all layout and routing was complete,

EasyTrax was used to produced GERBER output files for the top and bottom layers.

A digital milling machine made by LPKF CAD/CAM Systems, Inc. was used to

produce the circuit board. This milling machine is designed specifically for making

prototype boards. The CAD/CAM package includes IsoCAM software that calculates

isolation channels from the GERBER files and drives the milling machine when design

processing is complete. When manufacturing the board, IsoCAM first prompts the user to

install a drill bit into the milling spindle to bore the holes for component mounting. Next,

the appropriate cutter must be installed to produce insulation gaps around all conductors.

72

After the top layer is machined, the board must be flipped and aligned in preparation for

machining the bottom layer. Figure 27 shows the top layer of the circuit board produced

using the machining process. Note that the machining process does not remove the copper

in the unused areas of the board unless specifically required.

Figure 27. Command Modulator Top Layer after Machining.

F. PRINTED CIRCUIT BOARD ASSEMBLY

After fabricating two copies of the circuit board, the connectors and DIP sockets

were soldered onto each board. It was at this point that the cost of not routing signals to the

bottom contact pads was fully realized. The parallel port connector was easy to attach since

the board thickness matches the spacing between the connector solder lugs. By slightly

elevating each DIP socket, soldering the top-layer connection pads was made easier. On the

other hand, the plastic edges on the connector for the tactor array wiring harness had to be

carved to allow access to the soldering pads. Once the solder connections were made,

73

command modulator assembly was completed by placing the PLDs and crystal oscillator

into their sockets. Figure 28 shows a completed Parallel Port Data Modulator after full

assembly.

.f!
MM vs§\

i i : ii 1
Meiiiasi i «ask»*;

oeosossss csee2ßß822
-. ncno»**» :■./<?; ■:■■ » ■ fy§e?s*«ti« ST.. ::i

• oik" t\ .

«»««»»»'»»»«

sit (•• << I
'<** £* a> m e% f* fsmnat t*
W*- m* tm *"**** em **? m? «*& «s*

mmm<

Figure 28. Fully Assembled Command Modulator.

G. SOFTWARE TO DRIVE THE COMMAND MODULATOR

For proper operation, the host computer must provide the command bytes to the

modulator. The C++ programming language was used to write a driver program to facilitate

issuing commands to the modulator through the parallel port. The program requests an

input command and waits for a user response. When a response is detected, the program

places the byte on the parallel port and waits for peripheral acknowledgement. Once

acknowledgement is received, the program requests another command from the user. The

74

program was written for the DOS operating system to allow use with older computers. A

more extensive command transmission program description and C++ source code are

included in Appendix G.

H. COMMAND MODULATOR TESTING

After manufacture and assembly, the command modulator was tested to ensure

proper operation. With an oscilloscope connected to the clock and data lines of the wiring

harness, the command transmission software was used to issue commands to the tactile

array. The oscilloscope measured the output waveforms. Figure 29 and Figure 30 show the

oscilloscope displays after issuing a 19 and a 218 command respectively. The images show

that the command byte is transmitted in the required serial packet format with the

communication bus changing value on the negative clock transition. The apparent

instability of the clock pulses is actually being caused by a noisy data probe.

*! fl Kft\ f\f\ fi f\ ft n f\ rl h:rt f\ A n rt n f\ 'f\ '/\ rt h n"

ii
LY_M.w_w_w_.y_y_y„.v_r_y..v

: : t

Figure 29. Command Modulator Output for 19 Command.

75

f\ M fc:A

W w _C...W.-r.JV.

rt

..[*.... \laWj M ^ (1 w _yJi.

,^4- ^fJ *V"< ►***¥"

j\~r*^P*w.

Figure 30. Command Modulator Output for 218 Command.

I. MODIFICATIONS TO THE MODULATOR DESIGN

During initial testing of the command modulator, it was discovered that several

copies of the command packet were being transmitted for each ordered command. This

system response was a result of the parallel port speed for the computer being used to issue

commands to the modulator. The modulator was latching, acknowledging, and transmitting

the command before the computer was able to clear the strobe. This anomaly required

reprogramming the PLDs to delay command transmission until the computer cleared the

strobe signal.

76

VI. TACTOR INTERFACE CHIP TESTING

Once the Parallel Port Data Modulator was complete, chip testing should have

centered on wiring the TIC to receive power and commands from the modulator. When the

four chips were received from fabrication, they were first inspected using a microscope to

examine the general chip condition and ensure the provided pin assignments were accurate.

The chips were then operationally tested using the command modulator but no output was

produced. In order to identify the reason for improper operation, the complete circuit was

simulated again. When the design simulated properly, the chips were more closely

examined using a scanning electron microscope and some potential manufacturing problems

were identified. Charged electron imaging was then attempted without success. Further

testing is not planned for this chip.

A. VLSI CHIP RECEIPT FROM FABRICATION

Four copies of the TIC were fabricated and bonded into 28-pin DIP packages. The

chips were mounted in anti-static foam and protected by a hinged plastic box. No damage

was evident to the chips due to the packaging and shipping processes. The TICs came with

a data sheet indicating the pin assignments that resulted from packaging. Figure 31

represents the TIC schematic with the signals associated to each pin.

77

<£ i_i. «_■■ \mt. i—i. (!) <—1. <—1. 1—1. n <
ft UUBIDJ3UUUZ ft
ft citn^wQ-iOKOa n

K K H> K H* _
^uwi-'00oosjOiui*»uroi-*

Tactor Interface Chip f

H.|-i|-i|-'l-'KJWWWWIOK)IOJJ
UlStMCOlSOH>MU^UlOI^O

(D g fl>
"" IT """

Figure 31. Tactor Interface Chip Pin Assignments.

B. VISUAL INSPECTION

The four chips received from fabrication were inspected using a microscope to

examine the general chip condition and ensure the provided pin assignments were accurate.

The stated pin assignments were correct, but microscopic inspection of the chips revealed

several dark areas that were initially thought to be dust on the protective scratch coat. A

more detailed visual inspection subsequently indicated that some of the impurities are in the

same fabrication layer as the aluminum conductors and may even extend into the silicon

transistor areas.

C. OPERATIONAL CHECK USING COMMAND MODULATOR

After confirming pin assignments, a wire wrap test circuit was constructed to mate

the TIC to the command modulator. All connections were traced and verified prior to

energizing this single-element tactile array. When power was applied, the clock signal was

measured at the TIC and found to be correct. The serial bus was then monitored as

command bytes were transmitted to the intelligent tactor. Each command packet was

78

received as expected but the TIC failed to provide the anticipated response. After

confirming the system setup and verifying all signal paths, several more commands sets

were issued. Still, no response was obtained from the mounted TIC. A second TIC was

mounted to determine if the first chip was faulty. The same series of tests were performed

and there was no response from the second TIC.

D. COMPLETE SYSTEM RESIMULATION

One likely cause of circuit failure could have been a faulty design. Rather than

continue with operational testing a plan was made to completely verify the TIC circuit again

to determine if a design oversight had been missed in the original testing. All original tests

were performed again on the extracted VLSI design. Every aspect of the circuit responded

exactly as designed. Additional tests were conducted to precisely simulate the series of

commands used to operationally test the TIC. Again, the simulation responded exactly as

specified.

E. SCANNING ELECTRON MICROSCOPE INSPECTION

Access to a scanning electron microscope was obtained to investigate the TIC

response failure. During careful examination of all chips, several manufacturing problems

were detected on every chip. The left image of Figure 32 shows contamination that may be

causing a short between power and ground. Spectral analysis of this area indicated that the

contaminant contained high levels of sulfur. The right image of Figure 32 shows particulate

contamination that might be shorting between the signals on the TIC internal command bus.

Figure 33 shows areas of aluminum oxidation. Figure 34 shows a metalization failure in the

top aluminum interconnect layer that causes the metal to extend beyond its design channel.

Finally, Figure 35 shows some of the many impurities peppered throughout the entire chip

79

layout. While these manufacturing problems may not be the direct cause of chip failure,

they certainly indicate questionable fabrication cleanliness. The real concern is not the areas

that were examined using the scanning electron microscope. The microscopic examination

only shows problems in the visible layers at the top of the silicon wafer. If these images

reflect general fabrication quality, the most likely cause of chip inoperability is similar

impurities and failures in the lower fabrication layers.

Figure 32. Scanning Electron Microscope Images of Potential Shorts.

Figure 33. Scanning Electron Microscope Images of Aluminum Oxidation.

80

''*",%* f^^^^^^^^^i^^^^^^g

Wi* *». ••.....
• •• \W*

Jli^S^iillilgliiiiii^^siiii

•" ••'♦!.» • ^.

;!•!?';;. .'-'* .'■■f-jt^

I.V. ' '•>

'T •■•*'-••■;•; "■•■«'* ' *.

Figure 34. Scanning Electron Microscope Image of Mask Failure.

WU "•Wl
lKffi..-l'fo.:&

*• •••• *'*& J-.'-T*.

M i*i«fl

^*~~"~•■!C^^'^,11111"" ■■fKPI T7--■••■:. -5f

P -:T---5 * i - :-:;i?.

ji!
»-^•.••'Ik"-

r^*^- wfc
#•••:•:•«*

kite

I" ill H
Figure 35. Scanning Electron Microscope Images of Embedded Impurities.

F. CHARGED ELECTRON IMAGING

Charged electron imaging is a method for observing the microchip using a scanning

electron microscope while the chip is energized to determine operating conditions. The

areas of the chip that are at a higher potential appear much brighter than the areas that are

grounded. This examination provides a visual method for circuit analysis with respect to

operations and points of failure. A special circuit was built to clock one bit per second into

the TIC to support charged electron imaging. When the chip was tested using this method,

there was no visible contrast between the power and ground points. This indicates the
81

inspection procedure was more complex than initially understood. Further, investigation by

the microscope technician is in progress to support this testing in the future.

G. FURTHER TESTING

Very little further testing is expected since the TIC chip is not currently funded

research. The next generation chip should be constructed with various test points to allow

evaluation of circuit performance at different locations within the VLSI layout.

82

Vn. REVISIONS TO THE COMMUNICATION PROTOCOL

The basic command structure is very efficient for communicating the essential

information for the tactile interface. Now that the first iteration is complete, the command

structure must be reevaluated for improvement with a second-generation tactile interface.

Many additional instructions could be included in the basic TIC control language. A

redefinition of the command structure will also require significant changes to the TIC

design. This chapter presents the limitations of the current command structure and suggests

a revised command structure that will improve system response and flexibility.

A. EVALUATION OF REGISTER COMMAND PAIRS

The current command structure produces continuous tactor activation for any wave-

shape parameter pair that has a pulse width greater than or equal to four times the repetition

period. The duplication of response for different register values is an' area available for

command improvement.

A constant resolution of 16 mS for pulse width and 64 mS for repetition period is

easy to implement with the first-generation down counter scheme. However, this timing

method produces an extremely wide difference for percentage wave-shape resolution.

When operating with the maximum repetition period, the wave shape has 64 different

selections for duty cycle between 0 and 25 percent and a duty cycle resolution of 0.4

percent. However, when operating with a one-half second repetition period, the wave shape

can assume 32 different duty cycles ranging from 0 to 100 percent with a duty cycle

resolution of 3.1 percent. As repetition period continues to decrease, the duty cycle

resolution increases exponentially. A more consistent duty cycle resolution would better

represent the desired physical stimulation.
83

A command structure based on duty cycle rather than pulse width would improve

both concerns in the preceding paragraphs. Duplicate response to command pairs would

still occur once for 100 percent activation at each value of repetition period but all other

duplication would be limited to the minimum resolution for the controlling counter. A duty

cycle parameter would also define a consistent duty cycle resolution at all repetition period

values. Use of 16 discrete duty cycles would provide a consistent 6.25 percent resolution

while 32 duty cycle values would provide 3.125 percent resolution.

B. TACTILE ARRAY SIZING

The original target tactile interface included forty tactors. The concept of using

multiple address values for each tactor was considered as a viable method of improving

system response by defining group identifiers in addition to the unique individual address.

Subsequent consideration of potential tactile interface applications supports forty tactors as

nearly the maximum number possible rather than an initial estimate. At the 1 MHz serial

transfer speed, the need for group addressing schemes is not critical since thirty three-byte

command sets can be issued in less than 1 mS. From these two assertions, the choice of 126

individual tactor addresses is too high and consumes too many of the 256 available

commands. Use of 63 individual addresses and one "all call" is sufficient for all expected

tactile interface applications.

C. PROGRAMMABLE OSCILLATION FREQUENCY

During the course of this research, the expected tactile transmitter has been changed

three times. Each new tactor operates best at a specific oscillation frequency and drive

current. The range of operating frequencies has been from 100 Hz to 250 Hz. Although the

current TIC design supports two discrete frequencies, a TIC capable of altering the

84

oscillation frequency using a command would be much more flexible for evaluating an array

of currently undefined tactors.

D. COMMANDED RESET

In certain circumstances, it might be beneficial to force a system reset for an

individual or group of tactors. A dedicated reset command allows an explicit reset to be

executed by any tactor interface chip.

E. REVISED COMMANDED STRUCTURE

The command structure defined in Table 24 below balances the concerns in the

preceding sections with the 256 available byte commands.

Command Word New Meaning

00000000 Reserved — TIC bus idle condition

00000001 Explicit System Reset.

00000010
to

000011 1 1

Unused commands available for future
use (14 values).

00010000
to

00011 1 1 1

Oscillation Frequency (16 discrete
values).

00100000
to

00111111

Duty Cycle (32 values ranging from
3% to 100%).

01000000
to

01111110

Addresses for up to 63 tactors.

01111111 ALL CALL - all tactors respond

10000000
to

11111111

Repetition Period value 0 to 127 with
32 mS resolution (0 to ~4 seconds).

Table 24. Revised Command Structure.

85

86

VIE. INCORPORATION OF ADDITIONAL DESIGN FEATURES

The initial intelligent tactor design was valuable to prove the concept is possible.

The second-generation tactile interface incorporates the revised command structure and

includes a design change to reduce current switching noise on the power line. This chapter

presents three improvements to the basic TIC design that evolved from these two issues.

A. IMPROVED BI-DIRECTIONAL CURRENT SWITCHING SCHEME

The initial method for generating bi-directional tactor current alternately activates

the diagonal switch pairs in the current switching structure of Figure 36. The implemented

switching pattern is illustrated in Figure 37. The drawback to this initial switching pattern

results from the switching characteristics of the bi-directional junction transistors. For a

brief period, both switches on each leg are conducting, resulting in a low resistance path

between the power line and ground. This momentary shorting action produces noticeable

transients on the power line that may affect TIC operation. A better switching pattern is

illustrated in Figure 38. The revised switching scheme prevents any shorting action on

either leg of the current switching structure, greatly reducing the switching transients on the

power line.

87

Figure 36. Tactor Current-Switching Structure.

la & lb on 2a & 2b on

time

Figure 37. Initial Current Switching Pattern.

la & lb on 2a & 2b on

time

Figure 38. Revised Current Switching Pattern.

88

B. PROGRAMMABLE OSCILLATION FREQUENCY

Incorporating a frequency register would allow the TIC to vary the tactor oscillation

frequency on the fly. Implementation of a separate frequency command is illustrated in

Figure 39. The redesigned module also includes the revised current switching pattern

discussed in the preceding section. To support the revised current switching pattern, the

oscillation frequency generator must produce a frequency eight times the desired oscillation

rate. This higher frequency then drives a loop counter whose value defines the switching

pattern.

Programmable Oscillation Frequency

Frequency
Register

Frequency
Counter

I i i

Frequency
Comparitor

Eight times
Oscillation
Frequency Reset

i r

Oscillation
Counter

i
enable
Power

Current
Switching
Actuator

 ►la&lb

 ► 2a & 2b

Figure 39. Generating the Oscillation Frequency with Revised Switching.

89

C. WAVE SHAPE GENERATION USING DUTY CYCLE

Incorporation of a duty cycle parameter instead of the pulse width parameter

requires the system to calculate pulse width from the stored duty cycle and repetition period.

A possible design that uses duty cycle to create the desired wave shape is illustrated in

Figure 40. This design uses a single up counter whose value is compared to the stored

repetition period and calculated pulse width to control tactor activation.

Duty Cycle based Control

Duty Cycle
Register

Repetition
Period

Register

I
Pulse Width
Calculator

Timing
Counter

l f— i - *

i

Pulse Width
Comparitor

Repetition
Period

Comparitor

I 1
enable to

Output

Power
Control

Logic
Reset

1 enable
▼ Power

Figure 40. Wave Shape Generation using a Duty Cycle Register.

90

D. REVISED COMMAND DECODER AND CONTROLLER

Changes to the command structure directly affect the design of the Command

Decoder and Controller module. Many changes are required in this module since the

revised commands differ significantly from the original command structure. The most

sweeping changes are required in the control signals produced by the command sequence

controller. Figure 41 illustrates the design changes required in the Command Decoder and

Controller module.

Command Decoder and Controller

Bus
Data-
Valid

8 bit Command Bus

I

Address
Comparitor

Freq difference
DC

difference

Freq Latch

Frequency ^_
Register ^

I

J
Address

Reference

Valid Address

Command
Sequence
Controller

Duty Cycle
Register

Frequency
Register Value

DC RP
Latch Latch

1
RP
difference

Repetition Period
Register

Duty Cycle
Register Value

Repetition Period Enable
Register Value Output

Figure 41. Revised Command Decoder and Controller module.

91

92

IX. CONCLUSIONS AND FURTHER WORK

Tactile communication is a viable method of conveying information without

impeding other sensory inputs. In many applications, tactile messages may be most

appropriate due to their intuitive and covert nature.

Previously, tactile communication has been experimental and limited, lacking

methods to effectively implement the technology in the field. This thesis has resulted in a

communication protocol and a tactor interface chip that will advance tactile communication

beyond its current physiological research environment.

Implementation of this concept is currently awaiting successful VLSI fabrication.

As more funding becomes available, many improvements are planned for the next

generation of Tactor Interface Chips. The Naval Postgraduate School is ready to advance

this technology for military, industrial, and consumer applications.

A. TACTILE INTERFACE SYSTEM PERFORMANCE

1. Simulation Performance during Design Process

Using minimum sized transistors, the tactile system has been completely designed

and simulated. The simulations operate properly at all development stages using clock

speeds of 5 MHz.

2. Parallel Port Data Modulator Performance

An interface that allows driving the tactile array from any commercial computer has

been developed to support TIC testing and demonstration. The modulator is provided

command bytes from the parallel port of a computer. The command modulator

automatically interfaces with the computer to receive the data then it transmits the data in

93

the require serial packet format. The Parallel Port Data Modulator has been manufactured

and successfully tested using simple programmable logic devices.

3. Manufactured TIC Performance

When received from the fabrication and packaging process, the TIC did not operate

as designed. In fact, the TIC produced on response at all. The entire design was simulated

again and found to work exactly as specified. Inspection of the VLSI chips using a scanning

electron microscope revealed many questionable manufacturing issues primarily regarding

cleanliness.

B. IMPROVEMENTS THAT ARE READY TO INCORPORATE

As the current chip was being fabricated, design of the next generation tactile

interface began. This new design improves the original design in several ways.

1. Expanded Communication Protocol

After careful evaluation of the original communication protocol, some basic changes

were made to make better use of the available command structure. The number of addresses

was reduced to allow improvement in the repetition period resolution. Pulse width was

discarded in favor of a duty cycle definition. Reset and oscillation frequency commands

were also added.

2. Shaped Oscillation Current

Currently, tactor current is applied in alternating square waves. A current switching

scheme that prevents momentary creation of a low resistance path between the power and

ground would help reduce tactor switching noise. A simple method to switch the current

that avoids any potential power to ground shorting was presented. Other methods that

94

would provide a more shaped output are under consideration and may actually be used to

produce a more sinusoidal current.

3. Programmable Frequency

It is desirable to support many different frequencies because different tactile

transmitter designs operate best at specific frequencies. The current TIC design has a

frequency selection between 125 Hz and 250 Hz. Incorporating a frequency counter into the

tactile design would expand the number of supported frequencies to sixteen.

C. RECOMMENDATIONS FOR NEXT VLSI LAYOUT

1. Elaborate Testing and Measurement Points

The greatest impediment to determining the reason for failure of the current chip is

the lack of any test points within the circuit. The next generation chip should include

numerous test points throughout all stages of command processing to allow signal tracing.

A method currently being considered is the incorporation of eight outputs that provide

circuit status information. By coupling these outputs to a four bit input selection, 128

parameters can be monitored to determine chip performance.

2. Timing with Up Counters and Comparators

By using up counters and comparators for system timing, redundant down counters

can be eliminated. Counter control would be limited to a single counter while output control

would result from comparing the counter value to a stored or calculated value.

D. PROSPECTS FOR FUTURE DEVELOPMENT

1. On-board Current Switching

Due primarily to the complexity of including analog BiCMOS components on a

digital CMOS chip, the tactor current switches are housed on a separate chip with the

95

control signals being provided by the TIC. The final TIC must incorporate these current

switches onto the chip to allow embedding the TIC into the tactor casing. This revision is

fundamental to the creation of an intelligent tactor.

2. Programmable Addressing

Use of programmable-gates would allow the TIC address to be electronically

assigned rather than set using external jumpers. Additionally, multiple address registers

could be included to allow each TIC to respond to several different addresses. Multiple

addressing would allow implementation of logical groups for more efficient communication.

3. Two-Way Communications

A change to the fundamental system paradigm might incorporate the ability for real-

time feedback to the controller. The status data could include all current TIC parameters.

Incorporating an onboard vibration sensor could also provide actual indication of tactor

operating parameters. Clearly, this change is beyond the early development requirements

for a functional tactile interface.

96

APPENDIX A. TIC MODELING USING VERILOG

A top-down design approach was used to ensure the Tactor Interface Chip

performed exactly as required. The Verilog® hardware description language, presented in

Reference 6, was used extensively for modeling all TIC components. Components at all

abstraction levels were tested using common "test benches" to ensure identical performance

between behavioral and structural definitions. Behavioral models were first designed and

tested to validate the design descriptions. The elements were then converted to structural

designs and tested with the same test bench programs to verify they performed precisely as

required.

This appendix documents the Verilog® code used in the TIC design. Each section

contains the test bench program, followed by the behavioral design definition and the

structural design definition.

A. TACTOR INTERFACE CHIP

// File: TIC_test.v
//
// Description: Test bench for Tactor Interface Chip
//
// Author: Jeff Link

'define PRD 40

module TIC_test;

reg [0:7] words [0:17] ;
reg [0:7] send;
reg din,reset;
integer ii, jj; // loop counters
wire elk,valid;
wire tPwrl,tPwr2;

Figure 42. TIC Test Bench Verilog® source code.

97

clock #('PRD/2) clkl (elk);
// TIC_b tic (tPwrl, tPwr2, din, elk, reset);
TIC_s tic (tPwrl, tPwr2, din, elk, reset);

initial begin
$display("time
$monitor("time %0d
words[0]=8'b00011010
wordsf l]=8'bl0000110
wordsf 2]=8'bll000011
wordsf 3]=8'b00010010
words! 4]=8'bl0001010
words[5]=8'bll000100
wordsf 6]=8'b00111011
words! 7]=8'b01111111
words[8]=8'b00111011
wordsf 9]=8'bl0000010
words[10]=8'bll000001
words[ll]=8'b00011010
words[12]=8'bl0000010
words[13]=8'bll000001
words[14]=8'b00011010
words[15]=8'bl0000000
words[16]=8'bll000010
words[17]=8'b00010010

\ttPwrl tPwr2");
\t %b %b",$time,tPwrl,tPwr2);

// valid address, execute command
// put 110 in pw reg & start tactor
// put 11 in rp reg & start tactor
// invalid address, ignore command
// don't put 1010 in pw reg
// don't put 100 in rp reg
// invalid address, ignore
// all call address, execute command
// invalid address, wait for command
// put 10 in pw reg & start tactor
// put 1 in rp reg & start tactor
// valid address, execute command
// same pw no need to reload
// same rp no need to reload
// valid address, execute command
// shut off tactor
// put 10 in rp reg but won't run
// invalid address, ignore command

// line idle

ii=ii+l) begin

■ jj=jj+l) begin

reset = 1;
din = 1;
#PPRD/4)
reset = 0;
#(2*'PRD)
for (ii=0; ii<18;

send=words[ii] ;
#'PRD din = 0;
for (jj=0; jj<£

#,PRD dln=send[jj]
end
#'PRD din = ~Asend;
t'PRD din = 1;
$display("time %0d\t sent %b",$time,send);
#{4*VPRD);
if (ii==2||ii==5|I±±==1011±±==13||ii==16)

(1000*VPRD); // line idle
end
#(100*'PRD)
$finish;

end

// start bit

// data bits

// odd parity
// stop bit

endmodule

Figure 42. TIC Test Bench Verilog source code (continued)

98

//•a***

// File: TIC_b.v
//
// Description: Tactor Interface Chip - behavioral model
//
// Author: Jeff Link

module TIC_b (tPwrl, tPwr2, din, elk, reset);

output tPwrl, tPwr2;
wire tPwrl, tPwr2;
input din, elk, reset;
wire [7:0] cmdBus;
wire [5:0] pwReg,rpReg;

ser_rcvr_b sr (cmdBus, busValid, din, elk, reset);
cmd_decode_b cd (enPwr,pwReg,rpReg,cmdBus,busValid,elk,-reset);
pwr_cntrl_b pc (tPwrl, tPwr2, pwReg, rpReg, enPwr, elk);

endmodule

Figure 43. TIC Behavioral model Verflog® source code.

// File: TIC_s.v
//
// Description: Tactor Interface Chip - structural model
//
// Author: Jef.f Link

module TIC_s (tPwrl, tPwr2, din, elk, reset);

output tPwrl, tPwr2;
wire tPwrl, tPwr2;
input din, elk, reset;
wire [7:0] cmdBus;
wire [5:0] pwReg,rpReg;

ser_rcvr_s sr (cmdBus, busValid, din, elk, reset);
cmd_decode_s cd (enPwr,pwReg,rpReg,cmdBus,busValid,elk,reset);
pwr_cntrl_s pc (tPwrl, tPwr2, pwReg, rpReg, enPwr, elk);

endmodule

Figure 44. TIC Structural model Verflog® source code.

99

B. SERIAL DATA RECEIVER

// File: ser_rcvr_test.v
//
// Description: Test bench for Serial Data Receiver
//
// Author: Jeff Link

module ser_rcvr_test;

reg [0:7] words [0:9];
reg [0:7] send;
wire [7:0] v;
reg din,rst;
reg [3:0] ii, jj;
wire elk,valid;

// loop counters

clock #(100) clkl (elk);
// ser_rcvr_b revr (v,valid,dln,clk,rst);
ser_rcvr_s revr (v,valid,din,elk,rst);

initial begin
=8'bl0101010
=8'b01010101
=8'bll001101
=8'bl0110110
=8'b00100100
=8'bll011011
=8'bl0111101
=8'b01000010
=8'b00001111
=8'b00111100

words[0]
words[1]
words[2]
words[3]
words[4]
words[5]
words[6]
words[7]
words[8]
words[9]
rst = 1;
din = 1;
#5
rst = 0;
#500
for (ii=0; ii<10; ii=ii+l) begin

send=words[ii];
#200 din = 0;
for (jj=0; jj<8; jj=jj+l) begin

#200 dln=send[jj];
end
#200 din = ~~send;
#2 0/0 din = 1;

end
#400
$finish;

end

always @(valid) begin
if (valid)

$display("time %0d \t %b is valid",$time,v);
end

// start bit

// data bits

// odd parity
// stop bit

endmodule

,® Figure 45. Serial Data Receiver Test Bench Verilog source code

100

//**

// File: ser_rcvr_b.v
//
// Description: Serial Data Receiver - behavioral model
//
// Author: Jeff Link
/ / * * * **

module ser_rcvr_b (cmdBus, busValid, din, elk, reset);
output [7:0] cmdBus;
wire [7:0] cmdBus;
output busValid;
input din/ elk, reset;
wire [11:0] qBus;

bitshiftl2_b bsO (qBus, din, elk, reset, partClear);
bitlatch8_b blO (cmdBus, qBus[9:2], latch, reset);
input_valid_b ivO (latch, busValid, partClear, qBus, elk, reset);

endmodule

Figure 46. Serial Data Receiver Behavioral model Verflog® source code.

//***

// File: ser_rcvr_s.v
//
// Description: Serial Data Receiver - structural model
//
// Author: Jeff Link
//***

module ser_rcvr_s (cmdBus, busValid, din, elk, reset);
output [7:0] cmdBus;
wire [7:0] cmdBus;
output busValid;
input din, elk, reset;
wire [11:0] qBus;

bitshiftl2_s bsO (qBus, din, elk, reset, partClear);
bitlatch8_s blO (cmdBus, qBus[9:2], latch, reset);
input_valid_s ivO (latch, busValid, partClear, qBus, elk, reset);

endmodule

Figure 47. Serial Data Receiver Structural model Verflog® source code.

101

1. Twelve-Bit Input Shift Register

// File: bitshiftl2_test.v
//
// Description: Test bench for 12 bit Shift Register
//
// Author: Jeff Link .
//••••A**

module bitshiftl2_test;

reg latch,rst;
reg [0:7] words [0:1] ;
reg [0:7] send;
reg [3:0] ii, jj; // loop counters
reg din, reset, partclear;
wire [11:0] bus;

clock clkl (elk);
bitshiftl2_b shiftl (bus, din, elk, reset, partclear);

// bitshiftl2_s shiftl (bus, din, elk, reset, partclear);

initial begin
words[0]=8'bl0101010;
words[l]=8'bl0110110;
$monitor("time %0d \t%b %b %b %b %b %b %b %b %b %b %b %b is on bus",

$time,bus[ll],bus[10],bus[9],bus[8],bus[7],bus[6],bus[5],bus[4],bus[3],bus[2]
,bus[l],bus[0]);

din = 1;
reset = 1;
partclear = 0;
$display("time %0d \t\t\t\t\t\t bus reset and idle",$time);
#2 reset = 0;
#44
for (ii=0; ii<2; ii=ii+l) begin

send=words[ii];
#9 din =0; II start bit
$display("time %0d \t\t\t\t\t\t %b start bit",$time,din);
for (jj=0; jj<8; jj=jj+l) begin

#20 dln=send[jj]; // data bits
$display("time %0d \t\t\t\t\t\t %b data bit",$time,din);

end
#20 din = -Äsend; // odd parity
$display("time %0d \t\t\t\t\t\t %b parity bit",$time,din);
#20 din =1; // stop bit
$display("time %0d \t\t\t\t\t\t %b stop bit", $time,din);
#9 partclear = 1;
$display("time %0d \t\t\t\t\t\t partial clear",$time);
#2 partclear = 0;

end

Figure 48. Twelve-Bit Input Shift Register Test Bench Verflog® source code.

102

#40
reset=l;
$display("time %0d \t\t\t\t\t\t reset",$time);
#40
$finish;

end

endmodule

Figure 48. Twelve-Bit Input Shift Register Test Bench Verilog® source code, (continued)

//••••••A**

// File: bitshiftl2_b.v
//
// Description: 12 bit Shift Register - behavioral model
//
// Author: Jeff Link

module bitshiftl2_b (bus, din, elk, reset, partclear);
output [11;0] bus;
reg [11:0] bus;
input din, elk, reset, partclear;
always @(posedge elk) begin

if (-reset) begin
#2
bus = bus « 1;
bus[0] = din;

end
end

always begin
#1
if (reset)
bus = 0;

end

always begin
#1
if (partclear & -reset)

bus[ll:l] = 0;
end

endmodule

.® Figure 49. Twelve-Bit Input Shift Register Behavioral model Verilog source code.

103

// File: bitshiftl2_s.v
//
// Description: 12 bit Shift Register - structural model
//
//. Author: Jeff Link

module bitshiftl2_s (bus, din, elk, reset, partclear);
output [11:0] bus;
wire [11:0] bus;
wire [11:0] nbus;
input din, elk, reset, partclear;
reg hi;

dff_b dsO (bus[0],nbus[0],dIn,hi,ntlout,elk),
dsl (bus[l],nbus[l],bus[0],hi,nrlout,elk),
ds2 (bus[2],nbus[2],bus[l],hi,nrlout,elk),
ds3 (bus[3],nbus[3],bus[2],hi,nrlout,elk),
ds4 (bus[4],nbus[4],bus[3],hi,nrlout,elk),
ds5 (bus[5],nbus[5],bus[4],hi,nrlout,clk),
ds6 (bus[6],nbus[6],bus[5],hi,nrlout,elk),
ds7 (bus[7],nbus[7],bus[6],hi,nrlout,elk),
ds8 (bus[8],nbus[8] ,bus[7],hi,nrlout,elk),
ds9 (bus[9],nbus[9],bus[8],hi,nrlout,elk),
dslO (bus[10],nbus[10],bus[9],hi,nrlout,elk),
dsll (bus[ll],nbus[ll],bus[10],hi, nrlout,elk);

not #1 ntl (ntlout,reset) ;

nor #2 nrl (nrlout,reset,partclear) ;

initial begin
hi=l;

end

endmodule

.® . Figure 50. Twelve-Bit Input Shift Register Structural model Verilog source code

104

2. Eight-Bit Data Latch

//***

// File: bitlatch8_test.v
//
// Description: Test bench for 8 bit Data Latch

//
// Author: Jeff Link
//***

module bitlatch8_test;

reg latch,rst;
reg [8:0] ii; // loop counter
wire [7:0] bus;

// bitlatch8_b latchl (bus,ii[7 :0],latch,rst) ;

bitlatch8_s latchl (bus ii[7:0],latch,rst);

initial begin
$monitor("time %0d \t%b %b %b %b %b %b %b %b is latched",

$time,bus[7],bus[6] bus[5] ,bus[4],bus[3] ,bus[2],bus[l],bus[0]);

rst = 1;
latch = 0;
#5
rst = 0;
#5;
for (ii=0; ii<256; ii= =ii+17) begin

$display("time %0d \t%b %b %b %b %b %b %b %b on bus",
$time,ii[7],ii[6] ii[5], ii[4],ii[3],ii [2],ii [l],ii[0]);

#10 latch = 1;
#10 latch = 0;
#10 rst = 1;
#10 rst = 0;

end
#40
$finish;

end
endmodule

,® Figure 51. Eight-Bit Data Latch Test Bench Verflog source code

105

//***

// File: bitlatch8_b.v
//
// Description: 8 bit Data Latch - behavioral model
//
// Author: Jeff Link
// ,**************************************■********************************

module bitlatch8_b (bus, inBus, latch, reset)
output [7:0] bus;
reg [7:0] bus;
input [7:0] inBus;
input latch, reset;

always @(posedge latch) begin
if (-reset)
bus = #3 inBus;

end

always begin
#1
if (reset)
bus = 0;

end
endmodule

Figure 52. Eight-Bit Data Latch Behavioral model Verilog® source code.

,,***
// File: bitlatch8_s.v
//
// Description: 8 bit Data Latch - structural model

//
// Author: Jeff Link
// ***

module bitlatch8_s (bus, inBus, latch, reset);

output [7:0] bus;
wire [7:0] bus;
wire [7:0] nbus;
input [7:0] inBus;
input latch, reset;
reg hi;

dff_b db0(bus[0],nbus[0],inBus[0],hi,-reset,latch),
dbl(bus[l],nbus[l],inBus[1],hi,-reset,latch),
db2(bus[2],nbus[2],inBus[2],hi,-reset,latch),
db3(bus[3],nbus[3],inBus[3],hi,-reset,latch),
db4(bus[4],nbus[4],inBus[4],hi,-reset,latch),
db5(bus[5],nbus[5],inBus[5],hi,-reset,latch),
db6(bus[6],nbus[6],inBus[6],hi,-reset,latch),
db7(bus[7],nbus[7],inBus[7],hi,-reset,latch);

initial begin
hi=l;

end
endmodule

Figure 53. Eight-Bit Data Latch Structural model Verilog® source code.

106

3. Input Stream Validity Check

// File: input_valid_test.v
//
// Description: Test bench for Input Stream Validity Check
//
// Author: Jeff Link

module input_valid_test;

.reg [0:7] words [0:2];
reg [0:7] send;
reg [11:0] inBus;
reg reset;
reg [3:0] ii; // loop counter

clock #(100) clkl (elk);
// input_valid_b iv (latch, busValid, partClear, inBus, elk, reset);
input_valid_s iv (latch, busValid, partClear, inBus, elk, reset);

initial begin
$display("\t\t\tlat bV pC inBus");
$monitor("time %0d \t %b %b %b %b",
$time,latch,busValid,partClear,inBus);

words[0]=8'bl0101010;
words[l]=8'bl0110110;
words[2]=8'b01000010;
reset = 0;
#25
for (ii=0; ii<3; ii=ii+l) begin

inBus[11]=1;r
inBus[10]=0;
inBus[9:2]=words[ii];
inBus[1]=~~words[ii];
inBus[0]=1;
#200;

end
#400
$finish;

end

always ©(busValid) begin
if (busValid)
$display("time %0d\t %b is valid",$time,inBus);

end

always @(po<sedge partClear) begin
#1
inBus[11:1]=0;
#40

inBus [10] =1;
end

endmodule

Figure 54. Input Stream Validity Check Test Bench Verilog® source code.

107

//♦••♦•••a***

// File: input_valid_b.v
//
// Description: Input Stream Validity Check - behavioral model
//
// Author: Jeff Link
//•••••a***

module input_valid_b (latch, busValid, partClear, inBus, elk, reset);
output latch, busValid, partClear;
reg latch, busValid, partClear;
input [11:0] inBus;
input elk, reset;
reg format,clearValid;

initial begin
latch = 0;
busValid = 0;
partClear = 0;
clearValid=0;

end

always begin
#1
format = #12 (inBus[11]&~inBus[10]&inBus[0]&(AinBus[9:1]));
clearValid = (-inBus[ll]&inBus[10]fcbusValid);

end

always begin
#1;
latch = #2 (~ (-format | elk));'

end

always begin
#1
partClear = #2 (format & busValid);

end

always @(posedge latch) begin
if (-(reset | clearValid)) begin
busValid = #3 format;

end
end

always begin
#1
if (reset | clearValid) begin
busValid = #1 0;

end
end

endmodule

Figure 55. Input Stream Validity Check Behavioral model Verilog® source code.

108

// File: input_valid_s.v
//
// Description: Input Stream Validity Check - structural model
//
// Author: Jeff Link
//A**

module input_valid_s (latch, busValid, partClear, inBus, elk, reset);
output latch, busValid, partClear;
wire latch, busValid, partClear;
input [11:0] inBus;
input elk, reset;
reg hi;

// nor #2 nrbus(nrbusout,nBusLatch,valid,elk);

xor #2 xrpO(xrpOout,inBus[1],inBus[2]), // parity check
xrpl(xrplout,inBus[3],inBus[4]),
xrp2(xrp2out,inBus[5],inBus[6]),
xrp3(xrp3out,inBus[7],inBus[8]),
xrp4(xrp4out,xrp0out,xrplout),
xrp5(xrp5out,xrp3out,inBus[9]),
xrp6(xrp6out,xrp2out,xrp5out),
xrp7(parity,xrp4out,xrp6out);

not #1 ntO(ninBuslO,inBus[10]),
ntl(nformat,format);

nand #2 naf0(nafOout,parity,ninBuslO), // format check
nafKnaflout, inBus [11] , inBus [0]) ;

nor #2 nrfO(format,nafOout,naflout),
nrlldatch,nformat,elk) , // latch
nrr2(nclrDff,reset,clrValid); // clear bus valid

and #2 andO(partClear,format,busValid); // partial clear

nor #2 nrO(clrValid,inBus[11],ninBuslO,nbusValid); // clear bus valid

dff_b dbO(busValid,nbusValid,format,hi,nclrDff,latch);// busValid

initial
hi=l;

endmodule

Figure 56. Input Stream Validity Check Structural model Verflog® source code.

109

C. COMMAND DECODER AND CONTROLLER

// File: cmd_decode_test.v
//
// Description: Test bench for Command Decoder and Controller
//
// Author: Jeff Link

module cmd_decode_test;

reg [7:0] cmdBus;
reg busValid,reset;

wire [5:0] pwReg,rpReg;

clock clkl (elk);
// cmd_decode_b dcO (enPwr,pwReg,rpReg,cmdBus,busValid,elk,reset);
cmd_decode_s del (enPwr,pwReg,rpReg,cmdBus,busValid,elk,reset);

initial begin
$display("\t\t\tenPwr pwReg rpReg");
$monitor("time %0d \t %b %b %b",

$ t ime,enPwr,pwReg,rpReg);
cmdBus=0; •
busValid=0;
reset=l;
#7 reset=0;
#9 cmdBus=8'b00011010

busValid=l; // 16
#80 cmdBus=8'bl0000110

busValid=l; // 96
#80 cmdBus=8'bll000011

busValid=l; //176
#80 cmdBus=8'b00010010

busValid=l; //256
#80 cmdBus=8'bl0001010

busValid=l; //336
#80 cmdBus=8'bll000100

busValid=l; //416
#80 cmdBus=8'b01111111

busValid=l; //496
#80 cmdBus=8'bl0001010

busValid=l; //576
#80 cmdBus=8'bll001011

busValid=l; //656
#80 cmdBus=8'b00011010

busValid=l; //736
#80 cmdBus=8'bl0000000

busValid=l; //816
#80 cmdBus=8'bll000010

busValid=l; //896
#80 cmdBus=8'b00010010

busValid=l; //976
#100
$finish

end

// valid address, execute command

// put 110 in pw reg & start tactor

// put 11 in rp reg & start tactor

// invalid address, ignore command

// don't put 1010 in pw reg

// don't put 100 in rp reg

// all call address, execute command

// put 1010 in pw reg & start tactor

// put 1011 in rp reg & start tactor

// valid address, execute command

// put 0000 in pw reg & start tactor

// put 0010 in rp reg & start tactor

// invalid address, ignore command

.® . Figure 57. Command Decoder and Controller Test Bench Verilog source code

110

always @ (cmdBus) begin
#75 busValid=0;

end

endmodule

Figure 57. Command Decoder and Controller Test Bench Verilog® source code,
(continued)

// File: cmd_decode_b.v
//
// Description: Command Decoder and Controller - behavioral model
//
// Author: Jeff Link

module cmd_decode_b (enPwr,pwReg,rpReg,cmdBus,busValid,elk,nReset);

output enPwr,pwReg,rpReg;
wire enPwr;
wire [5:0] pwReg,rpReg;
input [7:0] cmdBus;
input busValid,elk,nReset;
wire [6:0] tactAddr;

addr_ref_b ar (tactAddr);
addr_comp_b ac (validAddr,cmdBus,tactAddr);
cmd_logic_b cl (enPwr,pwLatch,rpLatch,

cmdBus,busValid/validAddr,pwDiff,rpDiff,elk,nReset);
pw_reg_b pr (pwReg,pwDiff,cmdBus[5:0],pwLatch,nReset);
rp_reg_b rr (rpReg,rpDiff,cmdBus[5:0] , rpLatch,nReset);

endmodule

Figure 58. Command Decoder and Controller Behavioral model Verilog® source code.

Ill

I,***

// File: cmd_decode_s.v
//
// Description: Command Decoder and Controller - structural model

//
// Author: Jeff Link
i,***

module cmd_decode_s (enPwr,pwReg,rpReg,cmdBus,busValid,elk,reset);

output enPwr,pwReg,rpReg;
wire enPwr;
wire [5:0] pwReg,rpReg;
input [7:0] cmdBus;
input busValid,elk, reset;
wire [6:0] tactAddr;

addr_ref_b ar (tactAddr);
addr_comp_s ac (validAddr,cmdBus,tactAddr);
cmd_logic_s cl (enPwr,pwLatch,rpLatch,

cmdBus,busValid,validAddr,pwDiff,rpDiff,elk,-reset);
pw_reg_s pr (pwReg,pwDi f f,cmdBus[5:0],pwLatch,reset);
rp_reg_s rr (rpReg,rpDiff,cmdBus[5:0],rpLatch,reset);

endmodule

Figure 59. Command Decoder and Controller Structural model Verilog® source code.

112

1. Command Sequence Controller

// File: cmd_logic_test.v
//
// Description: Test bench for Command Sequence Controller
//
// Author: Jeff Link
//***

module cmd_logic_test;

reg [7:0] cmdBus;
reg busValid,nValidAddr,pwDiff,rpDiff,nReset;

clock clkl (elk);
// cmd_logic_b log (enPwr,pwLatch,rpLatch,
// cmdBus,busValid,nValidAddr,pwDiff,rpDiff,elk,nReset);
cmd_logic_s log (enPwr,pwLatch,rpLatch,

cmdBus,busValid,nValidAddr,pwDiff,rpDiff,elk,nReset);

initial begin
$display("\t\t\tenPwr pwLatch rpLatch");
$monitor("time %0d \t %b %b . %b",

$time,enPwr,pwLatch, rpLatch);
cmdBus=0;
busValid=0;
nValidAddr=l;
pwDiff=0;
rpDiff=0;
nReset=0;
#7 nReset=l ,-

. #9 cmdBus=8'b00011010;
busValid=l; //16

#5 nValidAddr=0; //21
#21 busValid=0; //42
#2 6 nValidAddr=l;

cmdBus=8'bl0000110;
busValid=l; //68

#4 pwDiff=l; //72
#26 busValid=0; //98
#12 cmdBus=8'bll000010;

busValid=l; //HO
#4 rpDiff=l; //114
#19 busValid=0; //133
#41 cmdBus=8'bOOOO0O0O;

busValid=l; //174
#4 pwDiff=l; //178
#12 busValid=0; //190
#4 cmdBus=8'b00000000;

busValid=l; //194
#16 busValid=0; //210
#100
$finish;

end

Figure 60. Command Sequence Controller Test Bench Verilog® source code.

113

always @ (posedge pwLatch) begin
#3 pwDi ff=0;

end

always @ (posedge rpLatch) begin
#3 rpDiff=0;

end

endmodule

,® Figure 60. Command Sequence Controller Test Bench Verilog source code, (continued)

// File: cmd_logic_b.v.
//
// Description: Command Sequence Controller - behavioral model

//
// Author: Jeff Link

module cmd_logic_b (enPwr,pwLatch, rpLatch,
cmdBus,busValid,vAddr,pwDiff,rpDiff,elk,nReset);

output enPwr,pwLatch,rpLatch;
reg enPwr,pwLatch,rpLatch;
reg [1:0] state;
input [7:0] cmdBus;
input busValid,vAddr,pwDiff,rpDiff,elk, nReset;

initial begin
state=0;
enPwr=0;
pwLatch=0;
rpLatch=0;

end

always @ (posedge elk) begin
if (nReset) begin

case(state)
2'b00,2'bl0:

if (busValid&-cmdBus[7]&vAddr)
state=l;

2'b01:
if (busValid&cmdBus[7])

state=3;
2'bll:

if (busValid&~cmdBus[7])
state=0;

endcase
end

end

Figure 61. Command Sequence Controller Behavioral model Verilog® source code.

114

always begin
if (nReset&&state==3) begin

if (cmdBus==8 'blOOOOOOO&ScbusValid)
enPwr=0;

else if (cmdBus[7]&&~cmdBus[6]&&busValid)
enPwr=~pwDi f f;

else if (cmdBus[7]&&cmdBus[6]&&busValid)
enPwr=~rpDiff;

pwLatch=(cmdBus[7]&&~cmdBus[6]&&busValid&&pwDiff),
rpLatch=(cmdBus[7]&&cmdBus[6]&&busValid&&rpDiff);

end
#1;

end

always @ (nReset) begin
if (-nReset) begin

state=0;
enPwr=0;
pwLatch=0;
rpLatch=0;

end
end

endmodule

,® . Figure 61. Command Sequence Controller Behavioral model Verilog source code,
(continued)

115

// File: cmd_logic_s.v
//
// Description: Command Sequence Controller - structural model

//
// Author: Jeff Link

module cmd_logic_s (enPwr,pwLatch,rpLatch,
cmdBus,busValid,nValidAddr,pwDiff,rpDiff,elk,nReset);

output enPwr,pwLatch,rpLatch;
wire [1:0] q,nq;
input [7:0] cmdBus;
input busValid,nValidAddr,pwDiff,rpDiff,elk,nReset;

reg hi;

dff_b ds0(q[0] ,nq[0],nd2out,hi,nReset,elk) , // state registers
dsl(q[13,nq[l],nt0out,hi,nReset,elk);

not #1 nt0(nt0out,nd0out),
nt4(nt4out,cmdBus[6]),
nt5(pwLatch,nd4out),
nt6(rpLatch,nd5out);

nand #2 ndO(ndOout,cmdBus[7],q[0]),
ndl(ndlout,nq[l],q[0]) ,
nd2(nd2out,nd0out,ndlout,orOout),
nd3(nd3out,nr0out,nrlout,anOout) ,
nd4(nd4out,anlout,pwDiff,nt4out),
nd5(nd5 out,anlout,rpDi f f,cmdBus[6]),
nd6(nd6out,nReset,nd3out),
nd7(nd7out,anlout,pwDiff,rpDiff) ,
nd8(nd8out,nd4out,nd5out,nd7out);

or #2 or0(or0out,cmdBus[7],q[0],nValidAddr),
orl(orlout,nd6out,nd8out);

nor #2 nrOfnrOout,cmdBus[0],cmdBus[l],cmdBus[2]),
nrl(nrlout,cmdBus[3],cmdBus[4] , cmdBus[5]) ,
nr6(enPwr,nr7out,orlout),
nr7(nr7out,enPwr,anlout);

and #2 anO(anOout,cmdBus[7],busValid,nt4out),
anl(anlout,q[l],q[0],busValid,cmdBus[7]),-

initial
hi=l ;

endmodule

.® . Figure 62. Command Sequence Controller Structural model Verflog source code

116

2. Address Comparator

// File: addr_comp_test.v
//
// Description: Test bench for Address Comparator
//
// Author: Jeff Link

module addr_comp_test;

reg [7:0] inBus;
wire [6:0] tactAddr;

addr_ref_b addref (tactAddr);
// addr_comp_b addcmp (nValidAddr,inBus,tactAddr);
addr_comp_s addcmp (nValidAddr,inBus,tactAddr);

// addr_comp_alt addcmp (nValidAddr, inBus,tactAddr);

initial begin
for (inBus=0; inBus<255; inBus=inBus+l) begin

#20
if (-nValidAddr)

$display("time %0d\t %b is valid address", $time, inBus) ;
end
#20
if (-nValidAddr)

$display("time %0d\t %b is valid address",$time,inBus);
$finish;

end
endmodule

Figure 63. Address Comparator Test Bench Verilog® source code.

// File: addr_comp_b.v
//
// Description: Address Comparator - behavioral model
//
// Author: Jeff Link

module addr_comp_b (validAddr,inBus,tactAddr);
output validAddr;
reg validAddr;
input [7:0] inBus;
input [6:0] tactAddr;

always begin
#4
validAddr = (-inBus[7]&&(inBus[6:0]==tactAddr||inBus[6:0]==7'blllllll))

end
endmodule

Figure 64. Address Comparator Behavioral model Verilog® source code.

117

//***

// File: addr_comp_s.v
//
// Description: Address Comparator - structural model

// Author : Jeff Link
, ,* *** *************

module addr_comp_s (nValidAddr,inBus,tactAddr);
output nValidAddr;
input [7:0] inBus;
input [6:0] tactAddr;

xnor #2 xeqO(xegOout,inBus[0],tactAddr[0]), // match reference
xeql(xeglout,inBus[1],tactAddr[1])
xeq2(xeq2out,inBus[2],tactAddr[2])
xeq3(xeq3out,inBus[3],tactAddr[3])
xeq4(xeq4out,inBus[4],tactAddr[4])
xeq5(xeq5out,inBus[5],tactAddr[5])
xeq6(xeq6out,inBus[6],tactAddr[6])

nand #2 naeO(nae0out,xeq0out,xeqlout,xeq2out),
nae2(nae2out,xeq3out,xeq4out,xeq5out),
nae3(nae3out,xeq6out,ninBus7);

nor #2 nreO(thisAddr,nae0out,nae2out,nae3out);

not #1 nteO(ninBus7,inBus[7]); // common elements

nor #2 nrnO(nValidAddr,thisAddr, allCall) ;

nand #2 naaO(naaOout,inBus[0],inBus[1],inBus[2]), // all call check
naa2(naa2out,inBus[3],inBus[4],inBus[5]),
naa3(naa3out,inBus[6],ninBus7);

nor #2 nraO(allCall,naa0out,naa2out/naa3out);

endmodule

.®. Figure 65. Address Comparator Structural model Verilog source code

118

// File: addr_comp_alt.v
//
// Description: Address Comparator - alternate model
//
// Author: Jeff Link

module addr_comp_alt (validAddr,inBus, tactAddr);
output validAddr;
input [7:0] inBus;
input [6:0] tactAddr;

xnor #2 xeqO
xegl
xeq2
xeq3
xeq4
xeq5
xeq6

and #2 aneO
anel
ane2
ane3
ane4
ane5
ane6

(xeqOout,
(xeqlout,
(xeq2out,
(xeq3out,
(xeq4out,
(xeq5out,
(xeq6out,
(aneOout,
(anelout,
(ane2out,
(ane3out,
(ane4out,
(ane5out,
(thisAddr

inBus[0]
inBus[1]
inBus[2]
inBus[3]
inBus[4]
inBus[5]
inBus[6]
xeqOout,
xeq2out,
xeq4out,
xeq6out,
aneOout,
ane2out,
,ane4out

,tactAddr[0])
,tactAddr[1])
,tactAddr[2])
,tactAddr[3])
,tactAddr[4])
,tactAddr[5])
,tactAddr[6])
xeqlout),
xeq3out),
xeq5out),
ntcOout),
anelout),
ane3out),
,ane5out);

// match reference

not #1 ntc0(ntc0out,inBus[7]);
or #2 orcO(validAddr,thisAddr,allCall);

and #2 anaO(anaOout,inBus[0],inBus[1]) ,
analtanalout,inBus[2],inBus[3]),
ana2(ana2out,inBus[4],inBus[5]),
ana3(ana3out,inBus[6],ntc0out),
ana4(ana4out,ana0out,analout),
ana5(ana5out,ana2out,ana3out),
ana6(allCall,ana4out,ana5out);

endmodule

// common elements

// all call check

.® . Figure 66. Address Comparator Alternate Structural model Verflog source code

119

3. Address Reference

// File: addr_ref_test.v
//
// Description: Test bench for Address Reference
//
// Author: Jeff Link
//***

module addr_ref_test;
wire [6:0] tactAddr;
addr_ref_b addrl (tactAddr);

initial begin
#1
$display("time %0d\t %b is reference address",$time,tactAddr) ,■
$finish;

end
endmodule

Figure 67. Address Reference Test Bench Verilog® source code.

// File: addr_ref_b.v
//
// Description: Address Reference - behavioral model
//
// Author: Jeff Link

'define ADDRESS 7'bOOllOlO

module addr_ref_b (tactAddr);
output [6:0] tactAddr;
reg [6:0] tactAddr;

initial begin
tactAddr = 'ADDRESS;
#1;

end
endmodule

Figure 68. Address Reference Behavioral model Verilog® source code.

120

4. Pulse Width Register

// File: pw_reg_test.v
//
// Description: Test bench for Pulse Width Register
//
// Author: Jeff Link

module pw_reg_test;

reg [5:0] inBus;
reg latch,reset;
wire [5:0] pwReg;

// pw_reg_b regl (pwReg,pwDiff,inBus,latch,reset);
pw_reg_s regl (pwReg,pwDiff,inBus,latch,reset);

initial begin
$display("\t\t\t inBus pwReg pwDiff");
reset=l;
#1
reset=0;
#1
latch=l;
#3
for (inBus=2; inBus<63; inBus=inBus+5) begin

#4
latch=~latch;
#20
latch=~latch;
#16;

end
#100
$finish;

end

always @ (pwDiff) begin
$display("time %0d \t %b %b %b",$time,inBus,pwReg,pwDiff);

end

endmodule

Figure 69. Pulse Width Register Test Bench Verflog® source code.

121

//it**

// File: pw_reg_b.v
//
// Description: Pulse Width Register - behavioral model
//
// Author: Jeff Link

module pw_reg_b (pwReg,pwDiff,inBus,latch,nReset);

output [5:0] pwReg;
output pwDiff;
reg [5:0] pwReg;
reg pwDiff;
input [5:0] inBus;
input latch,nReset;

always @ (posedge latch) begin
if (nReset)

#3 pwReg=inBus;
end

always @ (inBus) begin
if (nReset)

#4 pwDiff=(inBus!=pwReg);
end

always @ (pwReg) begin
if (nReset)

#4 pwDiff=(inBus!=pwReg) ;
end

always @ (negedge nReset) begin
#1 pwReg=0;

end
endmodule

Figure 70. Pulse Width Register Behavioral model Verilog® source code

122

//•a***

// File: pw_reg_s.v
//
// Description: Pulse Width Register - structural model
//
// Author: Jeff Link

module pw_reg_s (pwReg,pwDiff,inBus,latch,reset);

output [5:0] pwReg;
output pwDiff;
wire [5:0] pwReg,npwReg ;
input [5:0] inBus;
input latch,reset;

reg hi;

dff_b dbO(pwReg[0],npwReg[0],inBus[0],hi, •
dbl(pwReg[l],npwReg[l],inBus[1],hi, ■
db2(pwReg[2],npwReg[2],inBus[2],hi, ■
db3(pwReg[3],npwReg[3],inBus[3], hi,-
db4(pwReg[4],npwReg[4],inBus[4],hi, ■
db5(pwReg[5],npwReg[5],inBus[5],hi, •

-reset,latch),
-reset,latch),
-reset,latch),
-reset,latch),
-reset,latch),
-reset,latch);

xor #2 xeqO(xegOout,inBus[0],pwReg[0]),
xegl(xeqlout,inBus[1],pwReg[1]),
xeg2(xeg2 out,inBus[2],pwReg[2]),
xeg3(xeg3out,inBus[3],pwReg[3]),
xeg4(xeq4out,inBus[4],pwReg[4]),
xeg5(xeq5out,inBus[5],pwReg[5]);

nor #2 nrO(nr0out,xeq0out,xeqlout,xeq2out),
nrl(nrlout,xeq3out,xeq4out,xeq5out);

nand #2 ndO(pwDiff,nrOout,nrlout) ;

initial begin
hi=l;

end

endmodule

.®, Figure 71. Pulse Width Register Structural model Verilog source code.

123

5. Repetition Period Register

// File: rp_reg_test.v
//
// Description: Test bench for Repetition Period Register

//
// Author: Jeff Link

module rp_reg_test;

reg [5:0] inBus;
reg latch,reset;
wire [5:0] rpReg;

// rp_reg_b regl (rpReg,rpDiff,inBus,latch,reset);
rp_reg_s regl (rpReg,rpDiff,inBus,latch,reset);

initial begin
$display("\t\t\t inBus rpReg rpDiff");
reset=l;
#1
reset=0;
#1
latch=l;
#3
for (inBus=2; inBus<63; inBus=inBus+5) begin

#4
latch=~latch;
#20
latch=~latch;
#16;

end
#100
$finish;

end

always @ (rpDiff) begin
$display("time %0d \t %b %b %b",$time,inBus,rpReg,rpDiff);

end

endmodule

Figure 72. Repetition Period Register Test Bench Verflog" source code.

124

// File: rp_reg_b.v
//
// Description: Repetition Period Register - behavioral model

//
// Author: Jeff Link

module rp_reg_b (rpReg,rpDiff,inBus,latch, nReset);

output [5:0] rpReg;
output rpDiff;
reg [5:0] rpReg;
reg rpDiff;
input [5:0] inBus;
input latch,nReset;

always @ (posedge latch) begin
if (nReset)

#3 rpReg=inBus;
end

always @ (inBus) begin
if (nReset)

#4 rpDiff=(inBus!=rpReg);
end

always @ (rpReg) begin
if (nReset)

#4 rpDiff=(inBus!=rpReg);
end

always @ (negedge nReset) begin
#1 rpReg=0;

end
endmodule

Figure 73. Repetition Period Register Behavioral model Verilog" source code

125

// File: rp_reg_s.v
//
// Description: Repetition Period Register - structural model
//
// Author: Jeff Link
//******■***

module rp_reg_s (rpReg,rpDiff,inBus,latch,reset);

output [5:0] rpReg;
output rpDiff;
wire [5:0] rpReg,nrpReg;
input [5:0] inBus;
input latch,reset;

reg hi;

dff_b dbO(rpReg[0],nrpReg[0],inBus[0],hi,-reset,latch),
dbl(rpReg[l],nrpReg[l],inBus[1],hi,-reset,latch),
db2(rpReg[2],nrpReg[2],inBus[2],hi,-reset,latch),
db3(rpReg[3],nrpReg[3],inBus[3],hi,-reset,latch),
db4(rpReg[4],nrpReg[4],inBus[4],hi,-reset,latch),
db5(rpReg[5],nrpReg[5],inBus[5],hi,-reset,latch);

xor #2 xeqO(xeqOout,inBus[0],rpReg[0]),
xeql(xeqlout,inBus[1],rpReg[1]),
xeq2(xeq2out,inBus[2],rpReg[2]),
xeq3(xeq3 out,inBus[3],rpReg[3]),
xeq4(xeq4out,inBus[4],rpReg[4]),
xeq5(xeq5out,inBus[5],rpReg[5]);

nor #2 nrO(nr0out,xeq0out,xeqlout,xeq2out),
nrl(nrlout,xeq3out,xeq4out,xeq5out);

nand #2 ndO(rpDiff,nr0out,nrlout);

initial begin
hi=l;

end

endmodule

.® Figure 74. Repetition Period Register Structural model Verilog source code.

126

D. TACTOR POWER CONTROLLER

// File: pwr_cn.trl_test.v
//
// Description: Test bench for Tactor Power Controller
//
// Author: Jeff Link

module pwr_cntrl_test;

reg [5:0] pwReg,rpReg;
reg tEnable;

clock #(25) clkl (elk);
// pwr_cntrl_b pcO (tPwrl, tPwr2, pwReg, rpReg, tEnable, elk);
pwr_cntrl_s pcO (tPwrl, tPwr2, pwReg, rpReg, tEnable, elk);

initial begin
tEnable=0;
pwReg=3;
rpReg=2;
$display("\t pwReg = %b rpReg = %b\n",pwReg,rpReg);
$display("\t\t\ttPwrl tPwr2");
$monitor("time %0d \t %b %b",$time,tPwrl,tPwr2);
#2000
tEnable=l;
#2000000
$finish;

end
endmodule

Figure 75. Tactor Power Controller Test Bench Verilog® source code.

// File: pwr_cntrl_b.v
//
// Description: Tactor Power Controller - behavioral model
//
// Author: Jeff Link
//♦a***

module pwr_cntrl_b (tPwrl, tPwr2, pwReg, rpReg, tEnable, elk);

output tPwrl,tPwr2;
wire tPwrl,tPwr2;
input [5:0] pwReg, rpReg;
input tEnable, elk;

clk_div_b elkdiv (fr250, fr62, elk, -tEnable);
pw_dncntr_b pwCntr (pwZero,pwReg,cntLd, cntClr,fr62);
rp_dncntr_b rpCntr (rpGTl ,rpReg,cntLd,cntClr,fr62);
pwr_logic_b pLogic (enPwr,cntLd,cntClr,tEnable,pwZero,rpGTl,fr62);
pwr_osc_b pOscil (tPwrl, tPwr2, enPwr, fr250);

endmodule

Figure 76. Tactor Power Controller Behavioral model Verilog source code.

127

// ***
// File: pwr_cntrl_s.v
//
// Description: Tactor Power Controller - structural model

//
// Author: Jeff Link
II ***

module pwr_cntrl_s (tPwrl, tPwr2, pwReg, rpReg, tEnable, elk);

output tPwrl,tPwr2;
input [5:0] pwReg, rpReg;
input tEnable, elk;

clk_div_s elkdiv (fr250, fr62, elk,reset);
pw_dncntr_s pwCntr (npwZero,pwReg,cntLd,cntClr,fr62);
rp_dncntr_s rpCntr (nrpGTl ,rpReg,cntLd,cntClr,fr62);
pwr_logic_s pLogic (enPwr,cntLd,cntClr, tEnable,npwZero,nrpGTl,fr62);
pwr_osc_s pOscil (tPwrl, tPwr2, enPwr, fr250);

not #1 ntO (reset,tEnable);

endmodule

Figure 77. Tactor Power Controller Structural model Verilog® source code.

128

1. Power Control Logic

//A**

// File: pwr_logic_test.v
//
// Description: Test bench for Power Control Logic
//
// Author: Jeff Link

module pwr_logic_test;

reg enable,npwZero,nrpGTl;

clock clkl (elk);
// pwr_logic_b plO (enPwr,cntLd,cntClr,enable,npwZero,nrpGTl,elk);
pwr_logic_s plO (enPwr,cntLd,cntClr,enable,npwZero,nrpGTl,elk);

initial begin
enable=0;
npwZero=0;
nrpGTl=l;
$display("\t\t\tenPwr cntLd cntClr");
$monitor("time %0d \t %b %b %b",$time,enPwr,cntLd, cntClr);
#25
enable=l; // 25 - 110
#40
npwZero=l; // 65 - 100
#20
nrpGTl=0; // 85 - 101
#20
npwZero=0; //105 - 111
#20
nrpGTl=l; //125 - 110
#20
npwZero=l;
nrpGTl=0; //145 - 101
#20
nrpGTl=l; //165 - 100
#20
npwZero=0; //185 - 111
nrpGTl=0;
#40;
$finish;

end
endmodule

Figure 78. Power Control Logic Test Bench Verilog® source code.

129

//***

// File: pwr_logic_b.v
//
// Description: Power Control Logic - behavioral model
//
// Author: Jeff Link
//***

module pwr_logic_b (enPwr,cntLd,cntClr,enable,pwZero,rpGTl,elk);

output enPwr,cntLd,cntClr;
reg enPwr,cntLd,cntC1r;
input enable,pwZero,rpGTl,elk;

always begin
cntClr=~enable;
enPwr=~pwZero;
cntLd=~rpGTl;

#1;
end

endmodule

Figure 79. Power Control Logic Behavioral model Verilog® source code.

//***

// File: pwr_logic_s.v
//
// Description: Power Control Logic - structural model
//
// Author: Jeff Link
// ***

module pwr_logic_s (enPwr,cntLd,cntClr,enable,npwZero,nrpGTl,elk) ;

output enPwr,cntLd,cntClr;
reg enPwr,cntLd;
input enable,npwZero,nrpGTl,elk;

not #1 ntO(cntClr,enable);

always begin
enPwr=npwZero;
cntLd=nrpGTl;
#1;

end

endmodule

Figure 80. Power Control Logic Structural model Verilog® source code.

130

2. Power Oscillator

// File: pwr_osc_test.v

//
// Description: Test bench for Power Oscillator
//
// Author: Jeff Link

module clk_div_test;

reg enable,-
integer ii; // loop counter

clock #(50) clkO (elk);
// pwr_osc_b poO (pwrl, pwr2, enable, elk);
pwr_osc_s poO (pwrl, pwr2, enable, elk);

initial begin
$display(" \tpwrl pwr2 enable");
$monitor("time %0d \t %b %b %b",$time,pwrl,pwr2,enable) ,•
enable=l;
ii = 0;
while (ii<12) begin

#5;
if (ii%3==2)

enable=0;
else

enable=l;
end
$finish;

end

always @ (posedge elk)
ii=ii+l;

endmodule

Figure 81. Power Oscillator Test Bench Verilog® source code.

131

//***

// File: pwr_osc _b.v
//
// Description: Power Oscillator - behavioral model
//
// Author: Jeff Link
//***

module pwr_osc_b (pwrl, pwr2, enable, osc) ;
output pwrl, pwr2;
reg pwrl, pwr2;
input enable, osc;

always begin
#2
if (~enable) begin
pwrl=0;
pwr2=0;

end
else begin
pwrl=osc;
pwr2=~osc;

end
end

endmodule

.® Figure 82. Power Oscillator Behavioral model Verilog source code

// File: pwr_osc_s.v
//
// Description: Power Oscillator - structural model

//
// Author: Jeff Link

module pwr_osc_s (pwrl, pwr2, enable, osc);
output pwrl, pwr2;
wire pwrl, pwr2;
input enable, osc;

nand #2 (npwrl,enable,osc),
(npwr2,enable,nose);

not (nose,osc),
(pwrl,npwrl),
(pwr2,npwr2);

endmodule

Figure 83. Power Oscillator Structural model Verilog® source code.

132

3. Pulse Width Down Counter

// File: pw_dncntr_test.v
//
// Description: Test bench for Pulse Width Down Counter
//
// Author: Jeff Link

module pw_dncntr_test;

reg [5:0] value;
reg load,clear;

clock clkl (elk);
// pw_dncntr_b down (npwZero,value,load,clear,elk);
pw_dncntr_s down (npwZero,value,load,clear,elk);

initial begin
value=9;
load=0;
clear=l;
$display("\t\t\t nZro clear load");
$monitor("time %0d \t %b %b %b",$time,npwZero,clear,load);
#25
load=l;
#40
clear=0; // 65
#100
load=0; // 165
#100
load=l ,- // 265
#80
load=0; // 345
#400 // 745
$finish;

end
endmodule

Figure 84. Pulse Width Down Counter Test Bench Verilog® source code.

133

//A**

// File: pw_dncntr_b.v
//
// Description: Pulse Width Down Counter - behavioral model
//
// Author: Jeff Link

module pw_dncntr_b (zeroCnt,value,load,clear,elk);

output zeroCnt;
reg zeroCnt;
reg [5:0] count;
input [5:0] value;
input load,clear,elk;

initial
count=0;

always begin
if (clear)

count=0;
if (zeroCnt & -load)

count=0;
zeroCnt=(count==0);
#1;

end

always @(posedge elk) begin
#3
if (clear)

count=0;
if (load&-clear)

count=value;
if (~load&~clear&~zeroCnt)

count=count-l;
end

I endmodule

Figure 85. Pulse Width Down Counter Behavioral model Verilog® source code.

134

// File: pw_dncntr_s.v
//
// Description: Pulse Width Down Counter - structural model
//
// Author: Jeff Link

module pw_dncntr_s (npwZero,value,load,clear,elk);

output npwZero;
wire [5:0] q,nq;
input [5:0] value;
input load,clear,elk;
reg hi;

nor #2 nr3(nr3out,q[2],nd2out),
nr5(nr5out,q[4],nd4out);

nand #2 nd2(nd2out,nq[l],nq[0]),
nd4(nd4out,nq[3],nr3out);

xnor #2 xnl(xnlout,nq[0],nq[l]),
xn2(xn2out,nd2out,q[2]),
xn3(xn3out,nr3out,nq[3]),
xn4(xn4out,nd4out,q[4]),
xn5(xn5out,nr5out,nq[5]);

tgmux_b tmO(tm0out,nq[0], value[0],load),
tml(tmlout,xnlout,value[1],load),
tm2(tm2out,xn2out,value[2],load),
tm3(tm3 out,xn3 out,value[3],load),
tm'4 (tm4out,xn4out,value[4] , load) ,
tm5(tm5out,xn5out,value[5],load);

dff_b dcO(q[0],nq[0],tm0out,hi,dClr,elk), // count registers
dcl(q[l],nq[l],tmlout,hi,dClr,elk),
dc2(q[2],nq[2],tm2out,hi,dClr,elk),
dc3(q[3],nq[3],tm3out,hi,dClr,elk),
dc4(q[4],nq[4],tm4out,hi,dClr,clk),
dc5(q[5],nq[5],tm5out,hi,dClr,clk);

nor #2 nrO(nrOout,q[0],q[l],q[2]),
nrl(nrlout,q[3],q[4],q[5]),
nr2(nr2out,load,npwZero),
nr3(dClr, nr2out,clear);

nand #2 ndO(npwZero,nrOout,nrlout);

initial
hi=l;

always @ (q) begin
$display("time %0d \tcount is %b",$time,q);

end

endmodule

Figure 86. Pulse Width Down Counter Structural model Verilog® source code.

135

4. Repetition Period Down Counter

// File: rp_dncntr_test.v
//
// Description: Test bench for Repetition Period Down Counter
//
// Author: Jeff Link

module rp_dncntr_test;

reg [5:0] value;
reg load,clear;

clock clkl (elk);
// rp_dncntr_b down (nrpGTl,value,load,clear,elk);
rp_dncntr_s down (nrpGTl,value,load,clear,elk);

initial begin
value=99;
load=0;
clear=l;
$display("\t\t\t nrpGTl clear load");
$monitor("time %0d \t %b %b %b",$time,nrpGTl,clear,load);
#25
load=l;
#40
clear=0; // 65
#100
load=0; // 165
#100 ' •
load=l; // 265
#80
load=0; // 345
#5000 // 745
$finish;

end
endmodule

Figure 87. Repetition Period Down Counter Test Bench Verilog® source code.

136

//***
// File: rp_dncntr_b.v
//
// Description: Repetition Period Down Counter - behavioral model
//
// Author: Jeff Link
//***

module rp_dncntr_b (rpGTl,value,load,clear, elk);

output rpGTl;
reg rpGTl,zeroCnt;
reg [7:0] count;
input [5:0] value;
input load,clear,elk;

initial
count=0;

always begin
if (clear)

count=0;
if (zeroCnt & -load)

count=0;
zeroCnt=(count==0);
rpGTl =(count>l);
#1;

end

always @(posedge elk) begin
#3
if (clear)'

count=0;
if (load&~clear)
count={value,2'bO 0};

if (~load&~clear&~zeroCnt)
count=count-l;

end

endmodule

Figure 88. Repetition Period Down Counter Behavioral model Verilog® source code.

// ***

// File: rp_dncntr_s.v
//
// Description: Repetition Period Down Counter - structural model

//
// Author: Jeff Link
// ***

module rp_dncntr_s (nrpGTl,value,load,clear,elk);
output nrpGTl;

Figure 89. Repetition Period Down Counter Structural model Verilog® source code.

137

wire
input
input
reg

[7:0] q,nq;
[5:0] value;
load,clear,elk;
hi,lo;

nand #2 nd2(nd2out,nq[l],nq[0]) ,
nd4(nd4out,nq[3],nr3out) ,
nd6(nd6out,nq[5],nr5out) ;

nor #2 nr3(nr3 out,q[2 J,nd2 out) ,
nr5(nr5out,q[4],nd4out),
nr7(nr7out,q[6],nd6out);

xnor #2 xnl(xnlout,nq[0],nq[l]) ,
xn2(xn2out,nd2out,q[2]),
xn3(xn3out,nr3out,nq[3]),
xn4(xn4out,nd4out,q[4]),
xn5(xn5out,nr5out,nq[5]),
xn6(xn6out,nd6out,q[6]),
xn7(xn7out,nr7out,nq[7]);

tgmux_b tmO(tm0out,nq[0], lo,
tml(tmlout,xnlout,lo,
tm2(tm2out,xn2out,value[0]
tm3(tm3 out,xn3 out,value[1]
tm4(tm4 out,xn4 out,value[2]
tm5(tm5out,xn5out,value[3]
tm6(tm6out,xn6out,value[4]
tm7(tm7out,xn7out,value[5]

load),
load),
load),
load),
load),
load),
load),
load);

dff_b dc0(q[0],nq[0],tm0out,hi,dClr,elk),
dcl(q[l],nq[l],tmlout,hi,dClr,elk),
dc2(q[2],nq[2],tm2out,hi,dClr,elk),
dc3(q[3],nq[3],tm3out,hi,dClr,elk),
dc4(q[4],nq[4],tm4out,hi,dClr,elk),
dc5(q[5],nq[5],tm5out,hi,dClr,elk),
dc6(q[6],nq[6],tm6out,hi,dClr,elk),
dc7(q[7],nq[7],tm7out,hi,dClr,elk);

// count registers

nor #2 nrO(nrOout,q[l],q[2]) ,
nrl(nrlout,q[3],q[4]) ,
nr2(nr2out,q[5],q[6],q[7])
nr4(nr4out,load,ZCnt) ,
nr6(dClr, nr4out,clear);

nand #2 ndO(ZCnt,nq[0],nrpGTl);

and #2 anO(nrpGTl,nr0out,nrlout,nr2out);

initial
hi=l;
lo=0;

end

begin

always @(q) begin
$display("time %0d \tcount is %b",$time,q);

end
endmodule

,®. Figure 89. Repetition Period Down Counter Structural model Verilog source code,
(continued)

138

5. Clock Divider

// File: clk_div_test.v
//
// Description: Test bench for Clock Divider
//
// Author: Jeff Link

module clk_div_test;

reg reset;
integer ii; // loop counter

clock #(50) clkO (elk);
// clk_div_b cdO (fr250, fr62, elk, reset);
clk_div_s cdO (fr250, fr62, elk, reset);

initial begin
$display(" \tfr250 fr62");
$monitor("time %0d \t %b %b",$time,fr250,fr62);
reset=l;
#2
reset=0;
ii = 0;
while (ii<3) begin

#5;
end
$finish;

end

always @ (posedge fr62)
ii=ii+l;

endmodule

Figure 90. Clock Divider Test Bench Verilog® source code.

139

//***

// File: clk_div_b.v
//
// Description: Clock Divider - behavioral model
//
// Author: Jeff Link
//** ****** *****************

vdefine base 64

module clk_div_b (fr250, fr62, elk, reset);
output fr250, fr62;
reg fr250, fr62;
input elk, reset;
integer countl;

initial begin
countl=0;
fr250=0;
fr62=0;

end

always @(posedge elk) begin
if (-reset) begin

countl = countl+1;
if (countl%,base == 0) begin

fr250 = ~fr250;
end
if (countl%(4*'base) == 0) begin

fr62 = ~fr62;
countl =0;

end
end

end

always begin
#1
if (reset) begin
countl =0;

end
end

endmodule

,® . Figure 91. Clock Divider Behavioral model Verflog source code

// ***

// File: clk_div_s.v
//
// Description: Clock Divider - structural model
//
// Author: Jeff Link
//***

Figure 92. Clock Divider Structural model Verflog® source code.

140

module clk_div. _s (fr250, fr62, elk, reset);
output fr250 fr62;
reg fr250 f r62 ;

wire [13:0 q,nq;
input elk, reset;
reg hi;

not #1 ntO (nReset reset)

dff_b dcO (q[0], nq[0]. nq[0], hi nReset elk) // count registers
del <g[l], nq[l], tdlin, hi nReset elk)
dc2 (g[2], nq[2], td2in, hi nReset elk)
dc3 (q[3], nq[3], td3in, hi nReset elk)
dc4 (q[4], nq[4], td4in, hi nReset elk),
dc5 (g[5], ng[5], td5in, hi nReset elk) ,
dc6 (g[6], ng[6], td6in, hi nReset elk) ,
dc7 (g[7], ng[7], td7in, hi nReset elk) ,
dc8 (g[8], ng[8], td8in, hi nReset elk),
dc9 <g[9], ng[9], td9in, hi nReset elk) ,
dclO (g[10] nq[10] tdl0in,hi nReset elk) ,
dell (g[ll] ng[ll] tdllin,hi nReset elk) , // 250 Hz for 1 MHz elk
dcl2 (g[l2] nq[12] tdl2in,hi nReset elk) ,
dcl3 (g[l3] nq[13] tdl3in,hi nReset elk) ,

xor #2 xrl
xr2
xr3
xr4
xr5
xr6
xr7
xr8
xr9

tdlin,
td2in,
td3in,
td4in,
td5in,
td6in,
td7in,
td8in,
td9in,

q[0],
nd2out
nr3out
nd4out
nr5out
nd6out
nr7out
nd8out
nr9out

qdl),
nq[2]),
q[3]),
nq[4]),
q[5]),
nq[6]),
q[7]),
ng[8]), ■
q[9]),

'

xrlO tdlOin ndl0out,nq[10]) ,

xrll tdllin nrllout,q[ll]),
xrl2 tdl2in ndl2out,nq[12]),
xrl3 tdl3in nrl3out,g[13]);

nand #2 nd2
nd4
nd6
nd8

nd2out
nd4out
nd6out
nd8out

g[l],
g[3],
g[5],
g[7],

g[0]),
nr3out),
nr5out),
nr7out),

ndlO ndl0out,g[9], nr9out),
ndl2 ndl2out,g[ll] nrllout);

nor #2 nr3
nr5
nr7
nr9

nr3out
nr5out
nr7out
nr9out

nq[2]
nq[4]
nq[6]
nq[8]

nd2out),
nd4out),
nd6out),
nd8out),

nrll nrllout,nq[10 ,ndl0out)
nrl3 nrl3out,nq[12 ,ndl2out)

initial
hi=l ;

always begir l
fr250 = nq 3]; // used ^ rice 11 for simulation speed
fr62 = nq 5];
#1;

end

endmodule

,® Figure 92. Clock Divider Structural model Verilog source code, (continued)

141

E. SUPPORT COMPONENTS

1. Clock with Parametric Half-Period

// ***
// File: clock_test.v
//
// Description: Test bench for Clock with Parametric Half-Period

//
// Author: Jeff Link
//***

module dff_test;

clock clokl (clkl)
clock #(50) clok2 (clk2)
clock #(100) clok3 (clk3)

initial begin
$display("\t\t\tclkl clk2 clk3");
$monitor("time %0d \t %b %b. %b",$time,clkl,clk2,clk3)
#501
$finish;

end
endmodule

Figure 93. Clock with Parametric Half-Period Test Bench Verflog® source code.

//***

// File: clock.v
//
// Description: Clock with Parametric Half-Period
//
// Author: Jeff Link
,,***

module clock (elk) ;
parameter delay=10;
output elk;
reg elk;
initial
elk = 1;

always
#(delay) elk = -elk;

endmodule

®
Figure 94. Clock with Parametric Half-Period Behavioral model Verilog source code

142

2. D flip-flop, positive edge triggered

// File: dff_test.v
//
// Description: Test bench for D flip-flop
//
// Author: Jeff Link

module dff_test;

reg d,nP,nC;
wire elk;

clock clkl (elk);
dff_b dffl (q,nq,nq,nP,nC,clk);

initial begin
d=l;
nP=l;
nC=0 ;
$display("\t\t\tg nq d nP nC");
$monitor("time %0d \t%b %b %b %b %b",$time,q,nq,d,nP,nC);
#12
nC=l;
#20
d=0;
#20
nP=0;
#20
nP=l;
#20
d=l;
#20
nC=0;
#20
nC=l;
#20
d=0;
$finish;

end
endmodule

Figure 95. D flip-flop Test Bench Verilog® source code.

143

// File: dff_b.v
//
// Description: D flip-flop, positive edge triggered - behavioral model

//
// Author: Jeff Link

module dff_b (q,nq,d,nP,nC,elk);

output q,nq;
reg q,nq;
input d,nP,nC,clk;

always @(posedge elk) begin
if (nP&nC) begin
q = #3 d;
nq = ~q;

end
end

always begin
#1
if (~nC) begin

q=0;
nq=l;

end
end

always begin
#1
if (-nP&nC) begin

q=l;
nq=0;

end
end

endmodule

Figure 96. D flip-flop Behavioral model Verilog® source code.

144

3. Transmission Gate MUX

//••••••a**

// File: tgmux_test.v
//
// Description: Test bench for Transmission Gate MUX
//
// Author: Jeff Link
//••••••••a**

module tgate_test;

reg Ain,Bin,select;

tgmux_b muxl (out,Ain,Bin,select);

initial begin
Ain=l;
Bin=0;
select=0;
$display("\t\t\tout Ain Bin sei");
$monitor("time %0d \t %b %b %b %b",$time,out,Ain,Bin,select);
#10 select=l;
#10 select=0;
#10
Ain=0;
Bin=l;
#10 select=l;
#10 select=0;
#20;
$finish;

end
endmodule

Figure 97. Transmission Gate MUX Test Bench Verflog® source code.

// File: tgmux_b.v
//
// Description: Transmission Gate MUX - behavioral model
//
// Author: Jeff Link

module tgmux_b (out,Ain,Bin,select);

output out;
reg out;
input Ain,Bin,select;

always
#1
if (select)

out = Bin;
else

out = Ain;
endmodule

Figure 98. Transmission Gate MUX Behavioral model Verflog® source code.

145

146

APPENDIX B. SYSTEM DESIGN SCHEMATICS

This appendix provides the design schematics for the Tactor Interface Chip

elements. The schematics were initially designed by hand using circuit examples contained

in References 1 and 8. After the circuits were iteratively revised and simulated, the designs

were reproduced graphically for reference and documentation. The schematics diagrams are

divided into sections based on their parent functional module.

A. SERIAL DATA RECEIVER

1. Twelve-Bit Input Shift Register

12 bit Shift Register

Serial Data Input

Clock

D Q

>cik_Q|> rTclJLQP'
Clr

Partial Clear

.Clr
■cjQ Clk<

Q D

D Q

Clr

T

D Q

>C|k_Q[>
Clr

_Clr
■CQ Clkf-1

Q D

_Clr
•clQ Clk<

Q D

D Q

>Clk_Q|o
Clr

.Clr
■dQ Clk<H

Q o

D Q

>C|k_Q
Clr

^Clr
■c|Q Clk<-

Q D

D Q

pf'Cij^Qp-
Clr
-u—

_Clr
Q Clk<

Q D

Input Bus

Figure 99. Structural Schematic for the Twelve-Bit Shift Register.

147

2. Eight-Bit Data Latch

8 bit Data Latch
Input Bus

Q 1 >-D d

>C|k_Qf>
Clr

>Clk_Q
Clr
"a—

>CIk_Qp-
Clr

>C[k_Q
Clr
"O—

Q—I LD Q

>C|k_Q
Clr
~v—

>Cjk_Q
Clr

>Clk_Q
Clr
-g—

>C|k_Qf>
Clr

Command Bus

Figure 100. Structural Schematic for the Eight-Bit Data Latch.

3. Input Stream Validity Check

Input Stream Validity Check
Input[0]

Figure 101. Structural Schematic for the Input Stream Validity Check.

148

C. COMMAND DECODER AND CONTROLLER

1. Command Sequence Controller

Command Sequence Controller

nValidAddr

clock

nReset

busValid

cmdBus[7]

cmdBus[0]

pwDiff

rpDiff

D Q

>Clk_Q|>
Clr

0 Q

>Ok_Q
Clr

pwLatch

rpLatch

enOutput

Figure 102. Structural Schematic for the Command Sequence Controller.

149

2. Address Comparator

addrRef[0]

addrRef[6]

cmdBus[7]

cmdBus[0]

Address Comparitor

nValidAddr

Figure 103. Structural Schematic for the Address Comparator.

150

3. Pulse Width Register

latch

nReset

cmdBus[5]

cmdBus[0]

Pulse Width Register

 pClk_Qp-
Clr

D Q

>Clk_Q|>
Clr
31

D Q

D Q

>Clk_Q
Clr
TU

D Q

>Clk_Q
Clr
TZ

D Q

>Clk_Qf>
Clr

D Q

>C|k_Q|o
Clr

pwRegister

pwDiff

Figure 104. Structural Schematic for the Pulse Width Register.

151

4. Repetition Period Register

latch

nReset

cmdBus[5]

cmdBus[0]

Repetition Period Register
D Q

>Clk_Q^>
Clr x:

D Q

>Clk_Q|>
Clr

D Q

>Cjk_Q|>
Clr

O Q

>Clk_Q
Clr

D Q

>C[k_Q
Clr

D Q

>CIk_Q|>
Clr

rpRegister

rpDiff

Figure 105. Structural Schematic for the Repetition Period Register.

152

D. TACTOR POWER CONTROLLER

1. Power Control Logic

Power Control Logic
enOutput cntClear

npwZero enPower

nrpGTl cntLoad

Figure 106. Structural Schematic for the Power Control Logic.

2. Power Oscillator

Power Oscillator
oscFreq

enPower

pwrla

pwrlb

pwr2a

pwr2b

Figure 107. Structural Schematic for the Power Oscillator.

153

3. Pulse Width Down Counter

Pulse Width Down Counter

pwRegister

cntLoad

cntClear

dock

MUX

MUX

MUX

MUX

MUX

MUX

D Q

>Clk_Qf>—'
Clr

D Q

>Clk_Q|>
Clr

D Q

>CIk_Q
Clr

D Q

>Cjk_Q
Clr

D Q

>Clk_Q
Clr

D Q

>C|k_Q
Clr
~u—

Figure 108. Structural Schematic for the Pulse Width Down Counter.

npwZero

154

4. Repetition Period Down Counter

Repetition Period Down Counter

rpRegister

cntLoad

cntClear

clock

MUX

MUX

MUX

MUX

MUX

MUX

°^

MUX

or MUX

D Q

>Cjk_Q
Clr

D Q

>Clk_Q|o-
Clr
TZ

D Q

>Clk_Q
Clr

D Q

>Clk_Qf>
Clr

D Q

>Clk_Q
Clr

O Q

>Clk_Q|>
Clr

O Q

>Clk_Q
Clr

D Q

>C[k_Qp-
Clr

ry

i_i

Figure 109. Structural Schematic for the Repetition Period Down Counter.

nrpGTl

155

5. Clock Divider

nReset

clock

Clock Divider

D Q-

>Clk_<j|>
Clr

>Cik_Qp-
Clr

>Clk_Q
Clr

>Clk_Q
Clr

>Clk_Q
Clr

>C(k_Q
Clr

>Cjk_Q
Clr

Figure 110. Structural Schematic for the Clock Divider.

>C|k_Qf>
Clr

>Clk_Qp
Clr

>Clk_Qf>
Clr

Q-

>C|k_Q
Clr

>C[k_Q[>
Clr

>Clk_Qp—'
Clr
T:

>Clk_(jp-
Clr

freq62.S

freq!25

freq250

156

APPENDIX C. STRUCTURAL EVALUATION USING SPICE

SPICE is a circuit simulation program developed by Dr. Lawrence Nagel in the

Department of Electrical Engineering and Computer Sciences at the University of

California, Berkely. The SPICE model for FETs allows defining the semiconductor devices

using pertinent parameter values. This capability affords designers the opportunity to

accurately simulate circuits for evaluation of response time and power consumption.

Reference 7 provides a comprehensive presentation of SPICE commands and conventions.

The structural designs presented in Appendix B were evaluated with SPICE to verify

circuit response. This appendix documents the SPICE code used for evaluating TIC

component design. Testing was limited to representative inputs since circuit behavior was

thoroughly evaluated using the Verilog® models presented in Appendix A. Clocked TIC

components were tested at 20 MHz instead of the design speed of 1 MHz to allow a safety

margin for system speed and to reduce the SPICE simulation time. A brief discussion of

each simulation is included to highlight the critical circuit response points.

A. GENERAL DEFINITION FILES

Modeling the TIC circuits required inclusion of FET parameters in all SPICE source

code files. Each logic element must be defined as a compilation of FETs since the circuits

were defined using fundamental logic elements rather than individual transistors. These

logic element definitions must also be included in all SPICE source code files. These two

inclusion requirements are separated into two different files to provide three levels of

physical component abstraction.

157

1. CMOS FET Model Parameters

The CMOS FET model parameters are provided by the expected VLSI chip

manufacturer. The parametric values are actually determined using a combination of

theoretical response and empirical measurements. These FET definitions are stored in a

separate file that must be included in every circuit definition. This separation ensures the

latest updated values are automatically used every time a SPICE simulation is executed. A

listing of the CMOS FET model definitions is included as Figure 111. Reference 9 contains

a detailed description of each of the FET model parameters.

* cmos.cir ==> CMOS PFET & NFET model definitions

* MOSIS PARAMETRIC TEST RESULTS
* DATE: 1 OCTOBER 1997
* RUN: N78K
* VENDOR: ORBIT
* TECHNOLOGY: SCNA20
* FEATURE SIZE: 2.0 MICRONS

.MODEL CMOSN NMOS LEVEL=2 PHI=0.700000 TOX=4.0800E-08 XJ=0.200000U TPG=1
+ VTO=0.8309 DELTA=3.2570E+00 LD=3.2850E-07 KP=6.2842E-05
+ UO=742.5 UEXP=1.9200E-01 UCRIT=2.1830E+04 RSH=6.1490E+00
+ GAMMA=0.5612 NSUB=6.7970E+15 NFS=9.0930E+10 VMAX=5.7540E+04
+ LAMBDA=4.2800E-02 CGDO=4.1704E-10 CGSO=4.1704E-10
+ CGBO=3.4581E-10 CJ=1.2204E-04 MJ=6.3602E-01 CJSW=5.5150E-10
+ MJSW=2.5691E-01 PB=4.4514E-01
* Weff = Wdrawn - Delta_W
* The suggested Delta_W is 2.0000E-09

.MODEL CMOSP PMOS LEVEL=2 PHI=0.700000 TOX=4.0800E-08 XJ=0.200000U TPG=-1
+ VTO=-0.9891 DELTA=1.2110E+00 LD=3.7130E-07 KP=1.7503E-05
+ UO=206.8 UEXP=2.8220E-01 UCRIT=1.1030E+05 RSH=1.0210E-01
+ GAMMA=0.7803 NSUB=1.3140E+16 NFS=7.1500E+11 VMAX=1.2110E+05
+ LAMBDA=5.3880E-02 CGDO=4.7138E-10 CGSO=4.7138E-10
+ CGBO=3.5113E-10 CJ=3.2670E-04 MJ=6.2773E-01 CJSW=3.7671E-10
+ MJSW=1.9873E-01 PB=9.0000E-01
* Weff = Wdrawn - Delta_W
* The suggested Delta_W is 2.3340E-08

Figure 111. CMOS PFET and NFET SPICE model definitions.

158

2. Fundamental Logic Element Definitions

The TIC circuits are defined as combinations of discrete logic elements, thus each

element must be defined in terms of the FETs used to implement the logic function. These

fundamental logic element definitions are required in every TIC component source file.

SPICE provides a convenient method for defining a collection of FETs as an element using

the sub-circuit function. The file listing in Figure 112 defines all of the logic elements used

in the SPICE simulation source files. This file is imported in every TIC component file

using the . INCLUDE command. The CMOS FET definitions are available to all source

files since the sub-circuit file includes the CMOS FET definition file as one of its first lines.

* subckt.cir ==> CMOS SUB-CIRCUITS for inclusion into other models

* CMOSP & CMOSN model definitions
.INCLUDE cmos.cir

* Inverter Circuit
* define INV - In Out Vdd Gnd
.SUBCKT INV i o v g
Ma v i o v CMOSP W=6U L=2U
Mb o i g g CMOSN W=3U L=2U
.ENDS

* Inverter Circuit - extra large
* define INVx - In Out Vdd Gnd
.SUBCKT INVx i o v g
Ma v i o v CMOSP W=12U L=2U
Mb o- i g g CMOSN W=6U L=2U
.ENDS

* Transmission Gate Circuit
* define XGATE - In Out Pgate Ngate Vdd Gnd
.SUBCKT XGATE i o p n v g
Ma i p o v CMOSP W=6U L=2U
Mb i n o g CMOSN W=3U L=2U
.ENDS

* 2-input NAND Circuit
* define NAND2 - Ain Bin Out Vdd Gnd
.SUBCKT NAND2 a b o v g
Ma v a o v CMOSP W=6U L=2U
Mb o a 2 g CMOSN W=3U L=2U
Mc v b o v CMOSP W=6U L=2U
Md 2 b g g CMOSN W=3U L=2U
. ENDS

Figure 112. Subcircuits for Fundamental Logic Element SPICE model definitions.

159

* 2-input AND Circuit
* define AND2 - Ain Bin Out Vdd Gnd
-SUBCKT AND2 a b o v g
Xla a b 2 v g NAND2
Xia 2 o v g INV
.ENDS

* 3-input NAND Circuit
* define NAND3 - Ain Bin Cin Out Vdd Gnd
.SUBCKT NAND3 a b c o v g
Ma v a o v CMOSP W=6U L=2U

g CMOSN W=3U L=2U
v CMOSP W=6U L=2U
g CMOSN W=3U L=2U
v CMOSP W=6U L=2U
g CMOSN W=3U L=2U

* 3-input AND Circuit
* define AND3 - Ain Bin Cin Out Vdd Gnd
.SUBCKT AND3 a b c o v g
Xla a b c 2 v g NAND3
Xia 2 o v g INV
.ENDS

* 4-input NAND Circuit
* define NAND4 - Ain Bin Cin Din Out Vdd Gnd
.SUBCKT NAND4 a b c d o v g

Mb o a 2
Mc v b o
Md 2 b 3
Me v c o
Mf 3 c g
.ENDS

Ma v a o V CMOSP W=6U L=2U
Mb o a 2 g CMOSN W=3U L=2U
Mc v b o V CMOSP W=6U L=2U
Md 2 b 3 g CMOSN W=3U L=2U
Me v c o V CMOSP W=6U L=2U
Mf 3 c 4 g CMOSN W=3U L=2U
Mg v d 0 V CMOSP W=6U L=2U
Mh 4 d g g CMOSN W=3U L=2U
.ENDS

* 4-input AND Circuit
* define AND4 - Ain Bin Cin Din Out Vdd Gnd
.SUBCKT AND4 a b c d o v g
Xla a b c d 2 v g NAND4
Xia 2 o v g INV
.ENDS

* 2-input NOR Circuit
* define NOR2 - Ain Bin Out Vdd Gnd
.SUBCKT N0R2 a b o v g
Ma v a 2 v CMOSP W=6U L=2U
Mb o a g g CMOSN W=3U L=2U
Mc 2 b o v CMOSP W=6U L=2U
Md o b g g CMOSN W=3U L=2U
.ENDS

Figure 112. Subcircuits for Fundamental Logic Element SPICE model definitions,
(continued)

160

* 2-input OR Circuit
* define OR2 - Ain Bin Out Vdd Gnd
.SUBCKT OR2 a b o v g
Xla a b 2 v g N0R2
Xia 2 o v g INV
.ENDS

* 3-input NOR Circuit
* define N0R3 - Ain Bin Cin Out Vdd Gnd
.SUBCKT NOR3 a b c o v g
Ma v a 2 v CMOSP W=6U L=2U
Mb o a g g CMOSN W=3U L=2U
Mc 2 b 3 v CMOSP W=6U L=2U
Md o b g g CMOSN W=3U L=2U
Me 3 c o v CMOSP W=6U L=2U
Mf o c g g CMOSN W=3U L=2U
. ENDS

* 3-input OR Circuit
* define OR3 - Ain Bin Cin Out Vdd Gnd
.SUBCKT OR3 a b c o v g
Xla a b c 2 v g N0R3
Xia 2 o v g INV
. ENDS

* D-Flip/Flop using transmission gates
* define DFLOPG - Din CLKin Qout nQout Vdd Gnd
.SUBCKT DFLOPG d elk q nq v g
Ma v 3 6 v CMOSP W=6U L=2U
Mb 7 3 g g CMOSN W=3U L=2U
Mc 6 5 2 v CMOSP W=6U L=2U
Md 2 elk 7 g CMOSN W=3U L=2U
Xga d 2 elk 5 v g XGATE
Xgb 3 4 5 elk v g XGATE
Xgc 4 nq elk 5 v g XGATE
Xia q nq v g INV
Xib elk 5 v g INV
Xic 2 3 v g INV
Xid 4 q v g INV
.ENDS

Figure 112. Subcircuits for Fundamental Logic Element SPICE model definitions,
(continued)

161

* Gated D-Flip/Flop w/ nClear using transmission gates
* define DFLOPGC - Din CLKin nCin Qout nQout Vdd Gnd
.SUBCKT DFLOPGC d elk nc g nq v g
Ma v 2 3 v CMOSP W=6U L=2U
Mb 3 2 9 g CMOSN W=3U L=2U
Me v nc 3 v CMOSP W=6U L=2U
Mf 9 nc g g CMOSN W=3U L=2U
Mg v 2 10 v CMOSP W=6U L=2U
Mh 11 3 g g CMOSN W=3U L=2U
Mi 10 5 2 v CMOSP W=6U L=2U
Mj 2 elk 11 g CMOSN W=3U L=2U
Mk 12 4 g v CMOSP W=6U L=2U
Ml q 4 g g CMOSN W=3U L=2U
Mo v 6 12 v CMOSP W=6U L=2U
Mp q 6 g g CMOSN W=3U L=2U
Xga d 2 elk 5 v g XGATE
Xgb 3 4 5 elk v g XGATE
Xgc 4 ng elk 5 v g XGATE
Xia g ng v g INV
Xib elk 5 v g INV
Xic nc 6 v g INV
.ENDS

* Gated D-Flip/Flop w/ nClear & nPreset using transmission gates
* define DFLOPGCP - Din CLKin nCin nPin Qout nQout Vdd Gnd
.SUBCKT DFLOPGCP d elk nc np g ng v g
Ma 8 2 3 v CMOSP W=6U L=2U
Mb 3 2 9 g CMOSN W=3U L=2U
Mc v 7 8 v CMOSP W=6U L=2U
Md 3 7 9 g CMOSN W=3U L=2U
Me v nc 3 v CMOSP W=6U L=2U
Mf 9 nc g g CMOSN W=3U L=2U
Mg v 2 10 v CMOSP W=6U L=2U
Mh 11 3 g g CMOSN W=3U L=2U
Mi 10 5 2 v CMOSP W=6U L=2U
Mj 2 elk 11 g CMOSN W=3U L=2U
Mk 12 4 g v CMOSP W=6U L=2U
Ml g 4 13 g CMOSN W=3U L=2U
Mm 12 np g v CMOSP W=6U L=2U
Mn 13 np g g CMOSN W=3U L=2U
Mo v .6 12 v CMOSP W=6U L=2U
Mp g 6 g g CMOSN W=3U L=2U
Xga d 2 elk 5 v g XGATE
Xgb 3 4 5 elk v g XGATE
Xgc 4 ng elk 5 v g XGATE
Xia g ng v g INV
Xib elk 5 v g INV
Xic nc 6 v g INV
Xid np 7 v g INV
.ENDS

* Toggle Flip/Flop w/ nClear using transmission gates
* define TFLOPC - Tin CLKin nCin Qout nQout Vdd Gnd
.SUBCKT TFLOPC telknegngvg
Xia t g 2 v g XOR2
Xda 2 elk nc g ng v g DFLOPC
.ENDS

Figure 112. Subcircuits for Fundamental Logic Element SPICE model definitions,
(continued)

162

* 2-input XOR Circuit
* define XOR2 - Ain Bin Out Vdd Gnd
.SUBCKT XOR2 a b o v g
Ma v a 2 v CMOSP W=6U L=2U

a g g CMOSN W=3U L=2U
a 4 v CMOSP W=6U L=2U
3 o v CMOSP W=6U L=2U
b 6 g CMOSN W=3U L=2U
a g g CMOSN W=3U L=2U
b 5 v CMOSP W=6U L=2U
2 o v CMOSP W=6U L=2U
3 7 g CMOSN W=3U L=2U
2 g g CMOSN W=3U L=2U
b 3 v CMOSP W=6U L=2U
b g g CMOSN W=3U L=2U

Mb 2
Mc v
Md 4
Me o
Mf 6
Mg v
Mh 5
Mi o
Mj 7
Mk v
Ml 3
.ENDS

* 2-input XNOR Circuit
k define XNOR2 - Ain Bin Out Vdd Gnd
.SUBCKT XN0R2 a b o v g
Ma v a 2 V CMOSP W=6U L=2U
Mb 2 a g g CMOSN W=3U L=2U
Mc V a 4 V CMOSP W=6U L=2U
Md 4 b o V CMOSP W=6U L=2U
Me o 3 6 g CMOSN W=3U L=2U
Mf 6 a g g CMOSN W=3U L=2U
Mg v 2 5 V CMOSP W=6U L=2U
Mh 5 3 o V CMOSP W=6U L=2U
Mi o 2 7 g CMOSN W=3U L=2U
Mj 7 b sr g CMOSN W=3U L=2U
Mk v b 3 V CMOSP W=6U L=2U
Ml 3 b g g CMOSN W=3U L=2U
.ENDS

" 2-input MUX Circuit
* define MUX - Ain Bin Sei Out Vdd Gnd
.SUBCKT MUX a b s o v g
Ma
Mb
Mc
Md
Me
Mf

v CMOSP W=6U
g CMOSN W=3U
v CMOSP W=6U
g CMOSN W=3U
v CMOSP W=6U
g CMOSN W=3U

=2U
=2U
=2U
=2U
=2U
=2U

.ENDS

Figure 112. Subcircuits for Fundamental Logic Element SPICE model definitions,
(continued)

163

B. SERIAL DATA RECEIVER

The SPICE model for the Serial Data Receiver is a combination of the models for its

subordinate components. A full source code listing is provided in Figure 113. The Serial

Data Receiver response is shown in Figure 114. The command packet "0011111110

1" is simulated into the serial data input for the receiver. When the last bit of the valid

command is received, the receiver latches the command onto the command bus and

provides a bus data valid signal to the other TIC modules. The bus data valid signal is held

for ten clock cycles and it is then cleared in preparation for the next possible command

packet. The command bus values are not changed until another command is received or

until the system is reset. The clearing action at 1.8 p,S in Figure 114 is caused by a system

reset signal inserted to verify the Serial Data Receiver reset response.

* SerialDataReceiver.cir ==> Serial Data Receiver Transient Characterxstics

* Logic Gate model definitions
.INCLUDE subckt.cir

* Power Supplies
VDS 10 5

* Input Signals
Vd d 0 PWL(0 5 299.5n 5 301.5n 0 399.5n 0 401.5n 5 749.5n 5 751.5n 0
799.5n 0 801.5n 5 15)
Vrst rst 0 PWL(0 0 1795n 0 1796n 5 1799n 5 1800n 0)
Vclk elk 0 PULSE(0 5 24.5N IN IN 24N 50N)

* Twelve-bit shift register
XsdO d elk nR iO niO 1 0 DFLOPGC
Xsdl iO elk nR il nil 1 0 DFLOPGC
Xsd2 il elk npC i2 ni2 1 0 DFLOPGC
Xsd3 i2 elk npC i3 ni3 1 0 DFLOPGC
Xsd4 i3 elk npC 14 ni4 1 0 DFLOPGC
Xsd5 i4 elk npC i5 ni5 1 0 DFLOPGC
Xsd6 i5 elk npC i6 ni6 1 0 DFLOPGC
Xsd7 i6 elk npC i7 ni7 1 0 DFLOPGC
Xsd8 i7 elk npC i8 ni8 1 0 DFLOPGC
Xsd9 i8 elk npC i9 ni9 1 0 DFLOPGC
XsdlO i9 elk npC ilO nilO 1 0 DFLOPGC
Xsdll ilO elk npC ill nill 1 0 DFLOPGC
Xsi rst nR 1 0 INV
Xsnr rst pC npC 1 0 NOR2

Figure 113. Serial Data Receiver SPICE model source code.

164

* Eight- -bit data latch
XldO i2 latch nR gO ngO 1 0 DFLOPGC
Xldl i3 latch nR gl ngl 1 0 DFLOPGC
Xld2 i4 latch nR g2 ng2 1 0 DFLOPGC
Xld3 i5 latch nR g3 ng3 1 0 DFLOPGC
Xld4 i6 latch nR g4 ng4 1 0 DFLOPGC
Xld5 i7 latch nR g5 ng5 1 0 DFLOPGC
Xld6 i8 latch nR g6 ng6 1 0 DFLOPGC
Xld7 i9 latch nR g7 ng7 1 0 DFLOPGC

* Input stream validity check
XvxO il i2 xoO 1 0 XOR2
Xvxl i3 i4 xol 1 0 XOR2
Xvx2 i5 i6 xo2 1 0 XOR2
Xvx3 i7 i8 xo3 1 0 XOR2
Xvx4 i9 xo3 xo4 1 0 XOR2
Xvx5 xoO xol xo5 1 0 XOR2
Xvx6 xo2 xo4 xo6 1 0 XOR2
Xvx7 xo5 xo6 xo7 1 0 XOR2
XvaO iO ill aoO 1 0 NAND2
Xval nilO xo7 aol 1 0 NAND2
XvnO aoO aol frm 1 0 NOR2
XviO frm nfrm 1 0 INV
Xvnl nbdv nilO ill nol 1 0 NOR3
Xvn2 nfrm elk latch 1 0 NOR2
Xvn3 rst nol no3 1 0 NOR2
XvdO frm latch no3 bdv nbdv 1 0 DFLOPGC
Xva2 bdv frm pC 1 0 AND2

* Simulation Parameters
.TRAN .IN 2000N 0 In

.END

Figure 113. Serial Data Receiver SPICE model source code, (continued)

165

Serial Data Receiver Response
£JL-

d
5

n

 1 .

busDataValid
5

n

i

1 1

Q7
5

0

I

a6
5

o

i

■

a5
d 5
0)
O)
S
"n n

i

.

> a4
5

n

i

■

a3
5

n

i

•

a2
5

n
'■

ai
5

n

i

■

q0
5

0 1 1 1 —i— 1 1 ! 1

:

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
time [uS]

Figure 114. Serial Data Receiver SPICE model response.

166

1. Twelve-Bit Input Shift Register

The SPICE model for the twelve-bit input shift register implements the structural

design of Figure 99. A full source code listing is provided in Figure 115. The command

packet "0 0 1 1 1 1 1 1 1 0 1" is simulated into the serial data input for the shift register. The

shift register response is shown in Figure 116, which illustrates the input bits shift one

position at every clock cycle. The clearing action at 1.7 |iS in Figure 116 is caused by a

partial-clear signal; demonstrating that only the highest ten bits are cleared. The clearing

action at 1.8 \iS is caused by a reset signal; demonstrating that all bits are cleared for a

system reset.

* shiftl2.cir ==> Twelve-Bit Shift Register Transient Characteristics

* Logic Gate model definitions
.INCLUDE subckt.cir

* Power Supplies
VDS 10 5

* Input Signals
Vd d 0 PWL(0 5 299.5n 5 301.5n 0 399.5n 0 401.5n 5 749.5n 5 751.5n 0

799.5n 0 801.5n 5 15)
Vrst rst 0 PWL(0 0 1795n 0 1796n 5 1799n 5 1800n 0)
Vpc pC 0 PWL(0 0 1695n 0 1696n 5 1699n 5 1700n 0)
Vclk elk 0 PULSE(0 5 24.5n In In 24n 50n)

* Twelve-bit shift register
XdO d elk nR qO ngO 1 0 DFLOPGC
Xdl qO elk nR ql nql 1 0 DFLOPGC
Xd2 ql elk npC q2 nq2 1 0 DFLOPGC
Xd3 q2 elk npC q3 nq3 1 0 DFLOPGC
Xd4 q3 elk npC q4 nq4 1 0 DFLOPGC
Xd5 q4 elk npC q5 nq5 1 0 DFLOPGC
Xd6 q5 elk npC q6 nq6 1 0 DFLOPGC
Xd7 q6 elk npC q7 nq7 1 0 DFLOPGC
Xd8 q7 elk npC q8 nq8 1 0 DFLOPGC
Xd9 q8 elk npC q9 nq9 1 0 DFLOPGC
XdlO q9 elk npC qlO nqlO 1 0 DFLOPGC
Xdll qlO elk npC qll nqll 1 0 DFLOPGC
Xi rst nR 1 0 INV
Xnr rst pC npC 1 0 NOR2

* Simulation Parameters
.TRAN .In 2000n 0 In

-END

Figure 115. Twelve-Bit Input Shift Register SPICE model source code.
167

Twelve-Bit Shift Register Response
elk

iir.-.z: :::::::x:::::::i:. '-_

d
5; ' '

0: ' ' ' 1— 1 1 1 ! 1
-

■«° , a: -r ■■■'■'■■■ ■ ' —f -, ■, ■ i ■. ■, ■ ■ i

0' i -1—I- i 4- ■ . , , , y
'-_

Ql

n_i_ i -4—1- , i -

-i' i • i' i'>'' -■'-- ■■■■■»■■ ' ' ' i i

L | | i i .1

l i

"*2
5 ; v i ■.■■■,■ t -T-M^-^-W^

n" ' ' i i Li_J i i
J j' Ld i i i i U _i_

Q3
D: I •■■■•■•J ■' i- .■■■'-,

n" -i—i—LJ I i i . i i i i , , | i ' ' j , i. '

q4
S- 1 -,.,.,. | ■■■ , 1 T i ■ . ' 1 ' .

E
„, n". i. 1...-1—1_ i -j—|L- i -l-iii 1 i , i i . i ."

S1 q5

o >
n i-.i i~(—!- i -i—L- i , i | , | > j i i i ,"

\6 ^
5; ' T '■'■■■■' ' r+^

n " i i i. i. i ■ i i i -i—i- i

, , i , , i , . , i , . . i . i

i ."

°a7

i

a- i i ■■■■■■-■• > -r-r

n". i ...i ...1.-.J—i—i—1_ i i J—L. i . J: , , _
\s
5 - 1 1 -p-^-, ■■'■ ,■)',', T |

A " 1 1 1 1 1 1 1 l , -1— \- i l_|_l i i 1 i , i . . . i .

q9

3

 U

l

J '
qlO

i

5; ' ' i1 ' '■''■' '

n *, i i i i , i. i, .i.. y—L—1_ i i -L

-l ' I ' ' i ' ' -i ' l ■ ■ ■ ' • '

 U | | _l_ | | . 1 . | ..I...J

qll
5: ' ' p1 <—

 i i 1— i i 1 1
".

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
time [uS]

Figure 116. Twelve-Bit Input Shift Register SPICE model response.

168

2. Eight-Bit Data Latch

The SPICE model for the eight-bit data latch implements the structural design of

Figure 100. A full source code listing is provided in Figure 117. Input for checking the data

latch is shown in Figure 118. Various command values are presented to the data latch and a

clock pulse provides the latch command. The eight-bit data latch response in Figure 119

shows that the various values are locked onto the command bus as required. The periodic

clearing of all bits is caused by a reset signal that is pulsed at every other latch cycle.

* latch8.cir ==> Eight-Bit Data Latch Transient Characteristics

* Logic Gate model definitions
.INCLUDE subckt.cir

* Power Supplies
VDS 10 5

* Input Signals
ViO iO 0 PWL(0
Vil
Vi2
Vi3
Vi4
Vi5
Vi6
Vi7

il
±2
i3
i4
i5
i6
i7

0
0
0
0
0
0
0

Vrst rst 0
Vlat latch

PWL(0
PWL(0
PWL(0
PWL(0
PWL(0
PWL(0
PWL(0
PULSE(5
0 PULSE

299.
399.
499.
599.
699.
799.
899.
999.
0 2.

(0 5

5n 5 301.5n 0 499.5n 0 501.5n 5 15)
5n 5 401.5n 0 699.5n 0 701.5n 5 15)
5n 5 501.5n 0 899.5n 0 901.5n 5 15)
5n 5 601.5n 0 1099.5n 0 1101.5n 5 15)
5n 5 701.5n 0 1299.5n 0 1301.5n 5 15)
5n 5 801.5n 0 1499.5n 0 1501.5n 5 15)
5n 5 901.5n 0 1699.5n 0 1701.5n 5 15)
5n 5 1001.5n 0 1899.5n
5n In In 95n lOOn)
24.5n In In 24n 50n)

0 1901.5n 5 15)

* Eight-bit data latch
XdO
Xdl
Xd2
Xd3
Xd4
Xd5
Xd6
Xd7

iO latch
il latch
i2 latch
i3 latch
i4 latch
i5 latch
i6 latch
i7 latch

nq2
nq3

nR qO nqO
nR ql nql
nR q2
nR q3
nR q4 nq4
nR q5 nq5
nR q6 nq6
nR q7 nq7

0 DFLOPGC
0 DFLOPGC
0 DFLOPGC
DFLOPGC
DFLOPGC
DFLOPGC
DFLOPGC

0 DFLOPGC
Xi rst nR 1 0 INV

* Simulation Parameters
.TRAN .In 2000n 0 In

.END

Figure 117. Eight-Bit Data Latch SPICE model source code.

169

Eight-Bit Data Latch Input

5
atch 1 1 -,

0

5

0

10 , , , - _, 1 , 1 1 1 1

i ' 1 ' i i i i i i i —

5

o

il , , , : , , ,

"

5

o

i2 , , , , _,

> 5
Immt

i3 . .. , , , ,

V

IS
S 0

5

o

■4 ,11 1 < -1 ' 1

5

n

i5 . . . , , , 1

5

n

i6 ! , , , , , 1 1

5

0
(

i7 . , , , —=,
 1 1 1 1 1 1 1 I

> 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
time [uS]

Figure 118. Eight-Bit Data Latch SPICE model input.

170

Eight-Bit Data Latch Output
latch

aO
5 ,

o-i u i-i '—i 1 J u J u
.

al

Q J L J U , 1 -J u

:

JU^UUUjUU.-J

Q2
5-r-ij—^rnn ' ■ r~

JU JUUufJU)JU.

a3
^ 5-r-i|— r-i|— r—ir—

i —_ —i —_. _—j

u^

Q) -
Ol _
« :
§ o_ L L L J U ,

a4 5'nrnrn~n '
:

i 1 ' u u j u J

a5
5"i—ii—' —ii— i—i — n —

i i i .—i —1 .—i —i ,—|

o_-LLJLJU i 1 1 ' ■-' u H

a6
5 i i i i .— |—| |—

i 1 1 1 ' H ■

q7
5;

i i i i ,—

(r 1 1 1 1

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
time [uS]

Figure 119. Eight-Bit Data Latch SPICE model response.

171

3. Input Stream Validity Check

The SPICE model for the input stream validity check implements the structural

design of Figure 101. A full source code listing is provided in Figure 120. Input for testing

the validity checker is shown in Figure 121. The command packet "0 0 1 1 1 1 1 1 1 0 1" is

simulated shifting through the input shift register. The input stream validity check response

in Figure 122 shows that a latch signal is generated when the command packet formatting

requirements are met. This locks the command byte onto the command bus and presents a

bus data valid signal for ten clock cycles. When the bus data valid flag is set, the partial

clear signal is produced.

172

* invalid.cir ==> Input Stream Validity Check Transient Characteristics

* Logic Gate model definitions
.INCLUDE subckt.cir

* Power Supplies
VDS 1 0 5

* Input Signals
ViO iO 0 PWL(0 0 25n 0 26n 5 325n 5 326n 0 425n 0 426n 5 775n 5 776n 0

825n 0 826n 5 1 5)
Vil il 0 PWL(0 0 75n 0 76n 5 375n 5 376n 0 475n 0 476n 5 825n 5 826n 0

875n 0 876n 5 1 5)
Vi2 i2 0 PWL(0 0 125n 0 126n

925n 0 926n 5 1
5
5)

425n 5 426n 0 525n 0 526n 5 860n 5 861n 0

Vi3 i3 0 PWL(0 0 175n 0 176n
975n 0 976n 5 1

5

5)

475n 5 476n 0 575n 0 576n 5 860n 5 861n 0

Vi4 i4 0 PWL(0 0 225n 0 226n 5 525n 5 526n 0 625n 0 626n 5 860n 5 861n 0
1025n 0 1026n 5 1 5)

Vi5 i5 0 PWL(0 0 275n 0 276n 5 575n 5 576n 0 675n 0 676n 5 860n 5 861n 0
1075n 0 1076n 5 1 5)

Vi6 i6 0 PWL(0 0 325n 0 326n 5 625n 5 626n 0 725n 0 726n 5 860n 5 861n 0
1125n 0 1126n 5 1 5)

Vi7 i7 0 PWL(0 0 375n 0 376n 5 675n 5 676n 0 775n 0 776n 5 860n 5 861n 0
1175n 0 1176n 5 1 5)

Vi8 i8 0 PWL(0 0 425n 0 426n 5 725n 5 726n 0 825n 0 826n 5 860n 5 861n 0
1225n 0 1226n 5 1 5)

Vi9 i9 0 PWL(0 0 475n 0 476n 5 775n 5 776n 0 1275n 0 1276n 5 15)

VilO ilC 0 PWL(0 0 525n 0 526n 5 825n 5 826n 0 1325n 0 1326n 5 15)

Vill il] 0 PWL(0 0 575n 0 576n 5 860n 5 861n 0 1375n 0 1376n 5 15)

Vrst rst . 0 PWL(0 0 1795n 0 1796n 5 1799n 5 1800n 0)
Vclk elk 0 PULSE(0 5 24.5n In In 24n 50n)

* Input stream validity check
XxO il i2 xoO 1 0 XOR2
Xxl i3 i 4 xol 1 0 XOR2
Xx2 i5 i 6 xo2 1 0 XOR2
Xx3 i7 i 8 xo3 1 0 XOR2
Xx4 i9 xo3 xo4 1 0 XOR2
Xx5 xoO xol xo5 1 0 XOR2
Xx6 xo2 xo4 xo6 1 0 XOR2
Xx7 xo5 xo6 xo7 1 0 XOR2

XaO iO i 11 aoO 1 0 NAND2
Xal nilC xo7 aol 1 0 NMFD2
XnO aoO aol frm 1 0 NOR2
XiO ilO nilO 1 0 INV
Xil frm nfrm 1 0 INV
Xnl nbdv nilO ill nol 1 0 NOR3
Xn2 nfrm elk latch 1 0 NOR2

Xn3 rst nol no3 1 0 NOR2
XdO frm latch no3 bdv nbdv 1 0 DFLOPGC
Xa2 bdv frm pC 1 0 AND2

* Simulation Parameters
.TRAN .In 2000n 0 In

.END

Figure 120. Input Stream Validity Check SPICE model source code.

173

£lk_

Ol
8
9 °

Input Stream Validity Check Input

time [uS]

U U
iC

.. 1 I

il

:

. ,
|

V)

•

a
:

iA .

■ |_j •

i5 ■
■

•

ifi

i7

■

■

i«

'■

iQ

. . i
i 1 n

'■

i11

 1 ; '

•

) ().2 ().4 «).6 ().8 1 : i.i » L.4 1.6 1.8 2

Figure 121. Input Stream Validity Check SPICE model input.

174

Input Stream Validity Check Output
elk

i i i i i i i i i

u u ii i i i i

latch

v
Ol
S
I5 busDatjaValid

partialClear

n r

T r

j i

T r

J L
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

time [uS]

Figure 122. Input Stream Validity Check SPICE model response.

175

C. COMMAND DECODER AND CONTROLLER

The SPICE model for the Command Decoder and Controller is a combination of the

models for its subordinate components. A full source code listing is provided in Figure 123.

The command sequence 01001100-10001100-11001100-01111111 is

simulated on the command bus with the corresponding bus valid flag. The Command

Decoder and Controller control signal response is shown in Figure 124 and the register

value response is shown in Figure 125.

The control signal response in Figure 124 illustrates the operating state transitions

and the command signals generated by the Command Decoder and Controller. The initial

command byte corresponds to the assigned address and causes the controller to shift to state

1. When the second byte is received, it is decoded as a command to set the pulse width

value, which shifts the controller to state 3. A pulse width latch signal is issued because the

pulse width register does not match the command bus value. Once the value is locked into

the register, the falling pulse width difference flag clears the latch signal. Output is enabled

when the new pulse width is latched, allowing the Tactor Power Control module to start

using the new pulse width value. The third byte decodes as a command to set the repetition

period, which requires no change in the control state. A repetition period latch command is

issued because the repetition period register does not match the command bus value. Once

the value is locked into the register, the falling repetition period difference flag clears the

latch signal. The fourth byte is the "all call" address. The previous set of register

commands is now complete and the controller shifts to state 0 to process the next command

set because the command received in control state 3 is an address command. The next clock

cycle shifts the controller to state 1 because the "all call" is a valid address and the controller

176

is now in state 0. The controller shift to state 0 just before 2 uS is caused by a system reset

signal, which also disables the output flag and clears the storage registers.

The register response in Figure 125 illustrates how the stored values change in the

pulse width and repetition period registers. At 0.5 \iS, the pulse width latch signal caused

the pulse width register to lock in the commanded value. At 1 (iS, the repetition period latch

signal caused the repetition period register to lock in the commanded value. Just before 2

J0.S, a system reset signal clears both storage registers.

177

* CmdDecodeCont.cir ==> Command Decoder & Controller Transient Character.

* Logic Gate model definitions
.INCLUDE subckt.cir

* Power Supplies
VDS 10 5

* Input Signals
ViO iO 0 PWL(0 0 1450n 0 1451n

0 PWL(0 0 1450n 0 1451n
0 PWL(0
0 PWL(0

Vil
Vi2
Vi3
Vi4
Vi5
Vi6
Vi7

il
i2
i3
i4
i5
i6
i7

1 5)
1 5)

0 PWL(0 0 1450n 0 1451n
0 PWL(0 0 1450n 0 1451n
0 PWL(0 5 450n
0 PWL(0 0 450n 0 451n 5

14n 0 15n 5 400n

5 1 5)
5 1 5)

5 1 5)
5 1 5)

1 5) 5 451n 0 950n 0 951n 5
1450n 5 1451n 0 10)
5 401n 0 500n 0 501n 5 900n 5 901n 0 lOOOn

5 1901n 0 10)
1980n 5)

VbV bV 0 PWL(0 0
0 lOOln 5 1400n 5 1401n 0 1500n 0 1501n 5 1900n
Vrst nRst 0 PWL(0 0 lOn 0 lln 5 1975n 5 1976n 0 1979n 0
Vclk elk 0 PULSE(0 5 24.5n In In 24n 50n)
VaO adO 0 0
Val adl 0 0
Va2 ad2 0 5
Va3 ad3 0 5
Va4 ad4 0 0
Va5 ad5 0 0
Va6 ad6 0 5

* Command sequence controller
XcdO aco2 elk nRst sO nsO 1 0 DFLOPGC
Xcdl icoO elk nRst si nsl 1 0 DFLOPGC
XcaO i7 sO acoO 1 0 NAND2
Xcal nsl sO acol 1 0 NAND2
Xca2 acoO acol ocoO aco2 1 0 NAND3
XciO acoO icoO 1 0 INV
XcoO i7 sO nValidAddr ocoO 1 0 OR3
Xca3 i7 bV sO si aco3 1 0 AND4
Xcil i6 ni6 1 0 INV
Xca4 i7 bV ni6 aco4 1 0 AND3
Xca5 aco4 ocol oco2 aco5 1 0 NAND3
Xca6 nRst aco5 aco6 1 0 NAND2
Xcol i3 i4 i5 ocol 1 0 NOR3
Xco2 iO il i2 oco2 1 0 NOR3
Xca7 ni6 pwDiff aco3 aco7 1 0 NAND3
Xca8 aco3 i6 rpDiff aco8 1 0 NAND3
Xca9 aco3 pwDiff rpDiff aco9 1 0 NAND3
XcalO aco7. aco8 aco9 acolO 1 0 NAND3
Xco3 aco6 acolO oco3 1 0 OR2
Xco4 oco3 oco5 enOut 1 0 NOR2
Xco5 aco3 enOut oco5 1 0 NOR2
Xci2 aco7 pwLat 1 0 INV
Xci3 aco8 rpLat 1 0 INV

Figure 123. Command Decoder and Controller SPICE model source code.

178

* Address comparator
XaxO iO adO xaoO 1 0 XNOR2
Xaxl il adl xaol 1 0 XNOR2
Xax2 i2 ad2 xao2 1 0 XNOR2
Xax3 i3 ad3 xao3 1 0 XNOR2
Xax4 i4 ad4 xao4 1 0 XNOR2
Xax5 i5 ad5 xao5 1 0 XNOR2
Xax6 i6 ad6 xao6 1 0 XNOR2
XaaO xaoO xaol xao2 aaoO 1 0 NÄND3
Xaal xao3 xao4 xao5 aaol 1 0 NAND3
Xaa2 xao6 ni7 aao2 1 0 NAND2
Xaa3 i6 ni7 aao3 1 0 NAND2
Xaa4 i3 i4 i5 aao4 1 0 NAND3
Xaa5 iO il i2 aao5 1 0 NAND3
XaoO aaoO aaol aao2 oaoO 1 0 MOR3
Xaol aao3 aao4 aao5 oaol 1 0 NOR3
Xao2 oaoO oaol nValidAddr 1 0 NOR2
Xai i7 ni7 1 0 INV

* Pulse width register
XpdO iO pwLat nRst pwO npwO 1 0 DFLOPGC
Xpdl il pwLat nRst pwl npwl 1 0 DFLOPGC
Xpd2 i2 pwLat nRst pw2 npw2 1 0 DFLOPGC
Xpd3 i3 pwLat nRst pw3 npw3 1 0 DFLOPGC
Xpd4 i4 pwLat nRst pw4 npw4 1 0 DFLOPGC
Xpd5 i5 pwLat nRst pw5 npw5 1 0 DFLOPGC
XpxO iO pwO xpoO 1 0 XOR2
Xpxl il pwl xpol 1 0 XOR2
Xpx2 i2 pw2 xpo2 1 0 XOR2
Xpx3 i3 pw3 xpo3 1 0 XOR2
Xpx4 i4 pw4 xpo4 1 0 XOR2
Xpx5 i5 pw5 xpo5 1 0 XOR2
XpoO xpoO xpol xpo2 opoO 1 0] STOR3
Xpol xpo3 xpo4 xpo5 opol 1 0] STOR3
XpaO opoO opol pwDiff 1 0 NAND2

* Repetition period register
XrdO iO rpLat nRst rpO nrpO 1 0 DFLOPGC
Xrdl il rpLat nRst rpl nrpl 1 0 DFLOPGC
Xrd2 i2 rpLat nRst rp2 nrp2 1 0 DFLOPGC
Xrd3 i3 rpLat nRst rp3 nrp3 1 0 DFLOPGC
Xrd4 i4 rpLat nRst rp4 nrp4 1 0 DFLOPGC
Xrd5 i5 rpLat nRst rp5 nrp5 1 0 DFLOPGC
XrxO iO rpO xroO 1 0 XOR2
Xrxl il rpl xrol 1 0 XOR2
Xrx2 i2 rp2 xro2 1 0 XOR2
Xrx3 i3 rp3 xro3 1 0 XOR2
Xrx4 i4 rp4 xro4 1 0 XOR2
Xrx5 i5 rp5 xro5 1 0 XOR2
XroO xroO xrol xro2 oroO 1 0 NOR3
Xrol xro3 xro4 xro5 orol 1 0 NOR3
XraO oroO orol rpDiff 1 0 NAND2

* Simulation Parameters
.TRAN .In 2000n 0 In

.END

Figure 123. Command Decoder and Controller SPICE model source code, (continued)

179

Command Decoder and Controller Control Response
elk

busValid
5 IZ _- 1

nJ , 1 , , 1
si

5; ' ' | ' ' '

n . 1— i i i

so , , ,
5 , , . . 1

0 -1 i i ii < , i -I—' i i ^

enOutput
5; ' ' ' ' '

>
■-' n , , i i i"

'

0) -

S1 nValidAddr

Is:
n , , ■■- 1— i i i

■

pwDiff
5 , , . i

n , , 1 , 1 1

■

nwLatch
S J '

■

rpDiff
5; ' ■ ' ' '

n , , i i i'
.

raLatch
5

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
time [uS]

Figure 124. Command Decoder and Controller SPICE model Control response.

180

pw5

Command Decoder and Controller Register Response

5

n

- ■ i i i i i i i i i

pw4
5

n
pw3

5

n

:

pw2
5

o

 1 1

.

pwl
5

n
.

pwO
5

> 1—1 n

:

u u

Ol rp5

I5
>

n
.

rp4
5

n

:

rp3
5

o

:

rp2
5

o
.

rpl
5

n
rpO

5

0 1 1 1 1 1 1 1 i i 1

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
time [uS]

Figure 125. Command Decoder and Controller SPICE model Register response.

181

1. Command Sequence Controller

The SPICE model for the command sequence controller implements the structural

design of Figure 102. A full source code listing is provided in Figure 126. The command

sequence 01001100-10001100-11001100-01111111 is simulated on the

command bus with the corresponding bus valid flag. The response in Figure 127 illustrates

the operating state transitions and the command signals generated by the command sequence

controller. The initial command byte corresponds to the assigned address and causes the

controller to shift to state 1. When the second byte is received, it is decoded as a command

to set the pulse width value, which shifts the controller to state 3. A pulse width latch signal

is now issued since the pulse width register does" not match the command bus value. Once

the value is locked into the register, the falling pulse width difference flag clears the latch

signal. Output is enabled when the new pulse width is latched, allowing the Tactor Power

Control module to start using the new pulse width value. The third byte decodes as a

command to set the repetition period, which requires no change in the control state. A

repetition period latch command is issued since the repetition period register does not match

the command bus value,. Once the value is locked into the register, the falling repetition

period difference flag clears the latch signal. The fourth byte is the "all call" address. The

previous set of register commands is now complete and the controller shifts to state 0 to

process the next command set because an address command was received in control state 3.

The next clock cycle shifts the controller to state 1 since the "all call" is a valid address and

the controller is now in state 0. The controller shift to state 0 just before 2 \iS in Figure 127

is caused by a system reset signal, which also disables the output flag and clears the storage

registers.

182

* CmdSeqCont.cir ==> Command Sequence Controller Transient Characteristics

■ * Logic Gate model definitions
.INCLUDE subckt.cir

* Power Supplies
VDS 10 5

* Input Signals
ViO iO 0 PWL(0 0 1450n 0 1451n 5 15)
Vil il 0 PWL(0 0 1450n 0 1451n 5 15)
Vi2 i2 0 PWL(0 5 1 5)
Vi3 i3 0 PWL(0 5 1 5)
Vi4 i4 0 PWL(0 0 1450n 0 1451n 5 15)
Vi5 i5 0 PWL(0 0 1450n 0 1451n 5 15)
Vi6 i6 0 PWL(0 5 450n 5 451n 0 950n 0 951n 5 15)
Vi7 i7 0 PWL(0 0 450n 0 451n 5 1450n 5 1451n 0 10)
VnVA nVA 0 PWL(0 0 450n 0 451n 5 1450n 5 1451n 0 10)
VbV bV 0 PWL(0 5 400n 5 401n 0 500n'0 501n 5 900n 5 901n 0 lOOOn 0

1400n 5 1401n 0 1500n 0 1501n 5 1900n 5 1901n 0 10)
VpwD pwD 0 PWL(0 5 600n 5 601n 0 951n 0 952n 5 15)

lOOln 5

VrpD rpD 0 PWL(0 5 HOOn 5 HOln 0 1451n 0 1452n 5 15)
Vrst nRst 0 PWL(0 5 1975n 5 1976n 0 1979n 0 1980n 5)
Vclk elk 0 PULSE(0 5 24.5n In In 24n 50n)

* Command sequence controller
XdO ao2 elk nRst qO nqO 1 0 DFLOPGC
Xdl ioO elk nRst ql nql 1 0 DFLOPGC
XaO i7 qO aoO 1 0 NAND2
Xal nql qO aol 1 0 NAND2
Xa2 aoO aol ooO ao2 1 0 NAND3
XiO aoO ioO 1 0 INV
XoO i7 qO nVA ooO 1 0 OR3
Xa3 i7 bV qO ql ao3 1 0 AND4
Xil i6 ni6 1 0 INV
Xa4 i7 bV ni6 ao4 1 0 AND3
Xa5 ao4 ool oo2 ao5 1 0 NAND3
Xa6 nRst ao5 ao6 1 0 NAND2
Xol i3 i4 i5 ool 1 0 NOR3
Xo2 iO il i2 oo2 1 0 NOR3
Xa7 ni6 pwD ao3 ao7 1 0 NAND3
Xa8 ao3 i6 rpD ao8 1 0 NAND3
Xa9 ao3 pwD rpD ao9 1 0 NAND3
XalO ao7 ao8 ao9 aolO 1 0 NAND3
Xo3 ao6 aolO oo3 1 0 OR2
Xo4 oo3 oo5 enOut 1 0 NOR2
Xo5 ao3 enOut oo5 1 0 NOR2
Xi2 ao7 pwLat 1 0 INV
Xi3 ao8 rpLat 1 0 INV

* Simulation Parameters
.TRAN .In 2000n 0 In

.END

Figure 126. Command Sequence Controller SPICE model source code.

183

busValid

^-fil-

2,°td

sO

0
si
S pwLatch
O 5

rpLatch

enOutput

Command Sequence Controller Response

™ 1 1 1 1 i ' i

~i r

i r

1 l

J L

-l 1 1 ; r

j l I L

T 1 1 r

J 1 I L_

T_ ! ! p

J L

J I I I I L.

T r

J I I L

J L

-i 1 1 1 1 r

J !_

-i 1 1 r

J I I I 1 L

-i 1 i ~r

J I I L.

Figure 127. Command Sequence Controller SPICE model response.

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
time [uS]

184

2. Address Comparator

The SPICE model for the address comparator implements the structural design of

Figure 103. A full source code listing is provided in Figure 128. The reference address is

set to " 1 0 0 1 10 0" and various values are presented on the command bus. The address

comparator response in Figure 129 illustrates the continuous address verification. The first

and last valid address indications correspond to the all-call address and the middle two valid

address indications are due to the assigned tactor address.

185

* AddrComp.cir ==> Address Comparator Transient Characteristics

* Logic Gate model definitions
.INCLUDE subckt.cir

* Power Supplies
VDS 10 5

* Input Signals
ViO iO 0 PWL(0 5 299.5n 5 300 5n 0 1299.5n 0 1300.5n 5 1 5>
Vil il 0 PWL(0 5 299.5n 5 300 5n 0 1399.5n 0 1400.5n 5 15)
Vi2 i2 0 PWL(0 5 299.5n 5 300

1 0)
5n 0 699.5n 0 700.5n 5 1699.5n 5 1700.5n

Vi3 i3 0 PWL(0 5 299.5n 5 300 5n 0 599.5n 0 600.5n 5 1 5)
Vi4 i4 0 PWL(0 5 299.5n 5 300 5n 0 1399.5n 0 1400.5n 5 15)

Vi5 i5 0 PWL(0 5 299.5n 5 3 00 5n 0 1199.5n 0 1200.5n 5 15)

Vi6 i6 0 PWL(0 5 299.5n 5 300 5n 0 499.5n 0 500.5n 5 1099.5n 5 1100.5n
1599.5n 0 1600.5n 5 1 5)

Vi7 i7 0 PWL(0 5 199.5n 5 200
1 0)

5n 0 899.5n 0 900.5n 5 999.5n 5 1000.5n

VaO adO 0 0
Val adl 0 0
Va2 ad2 0 5
Va3 ad3 0 5
Va4 ad4 0 0
Va5 ad5 0 0
Va6 ad6 0 5

* Address comparator
XxO iO adO xoO 1 0 XNOR2
Xxl il adl xol 1 0 XNOR2
Xx2 i2 ad2 xo2 1 0 XNOR2
Xx3 i3 ad3 xo3 1 0 XNOR2
Xx4 i4 ad4 xo4 1 0 XNOR2
Xx5 i5 ad5 xo5 1 0 XNOR2
Xx6 i6 ad6 xo6 1 0 XNOR2
XaO xoO xol xo2 aoO 1 0 NAND3
Xal xo3 xo4 xo5 aol 1 0 NAND3
Xa2 xo6 ni7 ao2 1 0 NAND2
Xa3 i6 ni7 ao3 1 0 NAND2
Xa4 i3 i4 i5 ao4 1 0 NAND3
Xa5 iO il 12 ao5 1 0 NAND3
XoO aoO aol ao2 ooO 1 0 NOR3
Xol ao3 ao4 ao5 ool 1 0 NOR3
Xo2 ooO ool nValidAddr 1 0 NOR2
Xi i7 ni7 1 0 INV

* Simulation Parameters
.TRAN .In 2000n 0 In

.END

Figure 128. Address Comparator SPICE model source code.

186

Address Comparitor Response
)

nValidAddr
5

0 1 1

-

i7
5

0

16
5

o ,

-

i5 ...
5

o

i4
> 5 _

a
I 0 . . , . .

13 ,.,.._.
5

0 1 1 ! 1 1

12
5

0

-

il
5

o

-

iO
5

n
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

time [uS]

Figure 129. Address Comparator SPICE model response.

187

3. Pulse Width Register

The SPICE model for the pulse width register implements the structural design of

Figure 104. A full source code listing is provided in Figure 130. Various values are

presented to the register and a clock pulse provides the latch command. The pulse width

register response in Figure 131 shows the various values are stored in the register as

required. The periodic clearing of all bits is caused by a reset signal that is pulsed at every

other latch cycle.

188

* PWregister.cir ==> Pulse Width Register Transient Characteristics

* Logic Gate model definitions
.INCLUDE subckt.cir

* Power Supplies
VDS 10 5

* Input Signals
ViO iO 0 PWL(0
Vil
Vi2
Vi3
Vi4
Vi5
Vi6
Vi7

il
i2
i3
i4
i5
i6
i7

0 PWL(0
0 PWL(0
0 PWL(0
0 PWL(0
0 PWL(0
0 PWL(0
0 PWL(0

Vrst rst 0 PULSE(5
Vclk latch 0 PULSE

299.5n 5 301.5n 0 499.5n 0 501.5n 5 15)
399.5n 5 401.5n 0 699.5n 0 701.5n 5 15)
499.5n 5 501.5n 0 899.5n 0 901.5n 5 15)
599.5n 5 601.5n 0 1099.5n 0 1101.5n 5 15)
699.5n 5 701.5n 0 1299.5n 0 1301.5n 5 15)
799.5n 5 801.5n 0 l'499.5n 0 1501.5n 5 15)
899.5n 5 9'01.5n 0 1699.5n 0 1701.5n 5 15)
999.5n 5 1001.5n 0 1899.5n 0 1901.5n 5 15)
0 2.5n In In 95n lOOn)
(0 5 24.5n In In 24n 50n)

* Pulse width register
XdO iO latch nR pwO npwO 1 0
Xdl il latch nR pwl npwl 1 0
Xd2 i2 latch nR pw2 npw2 1 0
Xd3 i3 latch nR pw3 npw3 1 0
Xd4 i4 latch nR pw4 npw4 1 0
Xd5 i5 latch nR pw5 npw5 1 0
XxO iO pwO xoO 1 0 XOR2
Xxl il pwl xol 1 0
Xx2 i2 pw2 xo2
Xx3 i3 pw3 xo3

DFLOPGC
DFLOPGC
DFLOPGC
DFLOPGC
DFLOPGC
DFLOPGC

Xx4 i4 pw4 xo4
Xx5 i5 pw5 xo5

XOR2
0 XOR2
0 XOR2
0 XOR2
0 XOR2

XoO xoO xol xo2 ooO 1 0 NOR3
Xol xo3 xo4 xo5 ool 1 0 NOR3
XaO ooO ool pwDiff 1 0 NAND2
Xi rst nR 1 0 INV

* Simulation Parameters
.TRAN .In 2000n 0 In

.END

Figure 130. Pulse Width Register SPICE model source code.

189

Pulse Width Register Response
latch

_II_lt_JI_iJLJUl_J_1l-JL-1l_,_.l-Jl_JU-i_1LJl-Jl_l_1LJLJI_l_lL_.LJl-J_,LJLJLJ_JLJLJ

pwDiff
, i . . i _. , i , i . i _, i

pwO
5'

0

■

i i i i i iii*

V
SI

ö 5
pw2

pw3

pw4

pw5

pwl
5' '

2,0 i i i i i

'

i r

i r

i r
U U i i

i i i ~ i

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
time [uS]

Figure 131. Pulse Width Register SPICE model response.

190

4. Repetition Period Register

The SPICE model for the repetition period register implements the structural design

of Figure 105. A full source code listing is provided in Figure 132. Various values are

presented to the register and a clock pulse provides the latch command. The repetition

period register response in Figure 133 shows that the various values are stored in the register

as required. The periodic clearing of all bits is caused by a reset signal that is pulsed at

every other latch cycle.

191

* RPregister.cir ==> Repetition Period Register Transient Characteristics

* Logic Gate model definitions
.INCLUDE subckt.cir

* Power Supplies
VDS 10 5

* Input Signals
ViO iO 0 PWL(0 299

0 PWL(0 5 399
0 PWL(0 5 499
0 PWL(0 5 599
0 PWL(0 5 699
0 PWL(0 5 799
0 PWL(0 5 899
0 PWL(0 5 999

Vrst rst 0 PULSE(5 0 2
Vclk latch 0 PULSE(0 5

Vil
Vi2
Vi3
Vi4
Vi5
Vi6
Vi7

il
i2
i3
i4
i5
i6
i7

,5n 5 301.5n 0 499.5n 0 501.5n 5 15)
,5n 5 401.5n 0 699.5n 0 701.5n 5 15)
.5n 5 501.5n 0 899.5n 0 901.5n 5 15)
,5n 5 601.5n 0 1099.5n 0 1101.5n 5 15)
,5n 5 701.5n 0 1299.5n 0 1301.5n 5 15)
,5n 5 801.5n 0 1499.5n 0 1501.5n 5 15)
,5n 5 901.5n 0 1699.5n 0 1701.5n 5 15)
,5n 5 1001.5n 0 1899.5n 0 1901.5n 5 15)
,5n In In 95n lOOn)
24.5n In In 24n 50n)

* Repetition period register
XdO iO latch nR rpO nrpO 1 0
Xdl il latch nR rpl nrpl 1 0
Xd2 i2 latch nR rp2 nrp2
Xd3 i3 latch nR rp3 nrp3
Xd4 i4 latch nR rp4 nrp4

i5 latch nR rp5 nrp5 Xd5

DFLOPGC
DFLOPGC
DFLOPGC
DFLOPGC
DFLOPGC
DFLOPGC

0 XOR2
0 XOR2
0 XOR2
0 XOR2
0 XOR2
0 XOR2

XxO iO rpO xoO
Xxl il rpl xol
Xx2 i2 rp2 xo2
Xx3 i3 rp3 xo3
Xx4 i4 rp4 xo4
Xx5 i5 .rp5 xo5
XoO xoO xol xo2 ooO 1 0 NOR3
Xol xo3 xo4 xo5 ool 1 0 NOR3
XaO ooO ool rpDiff 1 0 NAND2
Xi rst nR 1 0 INV

* Simulation Parameters
.TRAN .In 2000n 0 In

.END

Figure 132. Repetition Period Register SPICE model source code.

192

Repetition Period Register Response
latch

rpPiff

rpO

rpl

£.0E
<u

^ 5
§5

rp2

rp3

rp4

rp5

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
time [uS]

Figure 133. Repetition Period Register SPICE model response.

193

D. TACTOR POWER CONTROLLER

The SPICE model for the Tactor Power Controller is a combination of the models

for its subordinate components. A full source code listing is provided in Figure 134. The

input signals simulate receiving a register command setting the pulse width to 2 at 0.5 [iS, a

register command setting the repetition period to 1 at 1 \iS, and finally a system reset just

before 2 U.S. The Tactor Power Controller response is shown in Figure 135 with an

emphasis on the output signals and the pulse width and repetition period down counter

operations. For the first 0.5 p,S, the counters are continuously cleared since the output is

disabled. From 0.5 to 1 |iS, the counters are continuously loading the values in then-

respective storage registers. This condition is driven by the 0 value stored in the repetition

period register and effectively causes the tactor to be continuously activated since the pulse

width is now non-zero. At 1 |iS, when the output is momentarily disabled, the pulse width

counter is cleared and the output oscillation signals stop. When the new repetition period is

set, the output is again enabled. The pulse width and repetition register values are

immediately latched into the down counters and, since pulse width is non-zero, tactor

activation begins. The down counters count down together and tactor activation stops when

the pulse width count reaches zero. The pulse width down counter stops at zero while the

repetition period down counter continues counting. When the repetition period count

reaches one, the wave shape is complete and the counters are reloaded on the next clock

cycle. This process continues, creating a 50% activation cycle for the simulated commands.

Just before 2 uS, a system reset signal is simulated and tactor activation is immediately

halted.

194

* TactorPwrCont.cir ==> Tactor Power Controller Transient Characteristics

* Logic Gate model definitions
.INCLUDE subekt.cir

* Power Supplies
VDS L 0 5

* Input S ignals
VenOut enOut 0 PWL(0 0 505n 0 506n 5 1005n 5 1006n 0 1009n 0 lOlOn 5

1980n 5 1981n 0 10)
Vclk elk 0 PULSE(0 5 24.5n In In 49n lOOn)
Vosc osc 0 PULSE(0 5 24.5n In In 24n 50n)
Vpw5 pw5 0 PWL(0 0 10)
Vpw4 pw4 0 PWL{0 0 10)
Vpw3 pw3 0 PWL(0 0 1 0)
Vpw2 pw2 0 PWL(0 0 10)
Vpwl pwl 0 PWL(0 0 500n 0 501n 5 1980n 5 1981n 0 10)
VpwO pwO 0 PWL(0 0 10)
Vrp5 rp5 0 PWL(0 0 10)
Vrp4 rp4 0 PWL(0 0 10)
Vrp3 rp3 0 PWL(0 0 10)
Vrp2 rp2 0 PWL(0 0 10)
Vrpl rpl 0 PWL(0 0 10)
VrpO rpO 0 PWL(0 0 lOOOn 0 lOOln 5 1980n 5 1981n 0 10)

* Power control logic
XiO s =nOut cntClr 1 0 INV

* Pulse Width Down Counter
XpaO opoO opol npwZ 1 0 NAND2
XpoO pq3 pq4 pq5 opoO 1 0 NORC i
Xpol pqO pql pq2 opol 1 0 NOR!
XpmO npqO pwO nrpGTl mpoO 1 0 MUX
XpdO mpoO elk opo5 pqO npqO 1 0 DFLOPGC
Xpxl npqO npql xpol 1 0 XNOR2
Xpml xpol pwl nrpGTl mpol 1 0 MUX
Xpdl mpol elk opo5 pql npql 1 0 DFLOPGC
Xpal npqO npql apol 1 0 NAND2
Xpx2 apol pq2 xpo2 1 0 XNOR2
Xpm2 xpo2 pw2 nrpGTl mpo2 1 0 MUX
Xpd2 mpo2 elk opo5 pq2 npq2 1 0 DFLOPGC
Xpo2 apol pq2 opo2 1 0 NOR2
Xpx3 opo2 npq3 xpo3 1 0 XNOR2
Xpm3 xpo3 pw3 nrpGTl mpo3 1 0 MUX
Xpd3 mpo3 elk opo5 pq3 npq3 1 0 DFLOPGC
Xpa2 opo2 npq3 apo2 1 0 NAND2
Xpx4 apo2 pq4 xpo4 1 0 XNOR2
Xpm4 xpo4 pw4 nrpGTl mpo4 1 0 MUX
Xpd4 mpo4 elk opo5 pq4 npq4 1 0 DFLOPGC
Xpo3 apo2 pq4 opo3 1 0 NOR2
Xpx5 opo3 npq5 xpo5 1 0 XNOR2
Xpm5 xpo5 pw5 nrpGTl mpo5 1 0 MUX
Xpd5 mpo5 elk opo5 pq5 npq5 1 0 DFLOPGC
Xpo4 nrpGTl npwZ opo4 1 0 NORS
Xpo5 opo4 cntClr opo5 1 0 NOR2

Figure 134. Tactor Power Controller SPICE model source code.

195

DFLOPGC

MUX
0 DFLOPGC

MUX
0 DFLOPGC

* Repetition Period Down Counter
XraO oroO orol oro2 nrpGTl 1 0 AMD3
XroO rql rq2 oroO 1 0 N0R2
Xrol rg3 rq4 orol 1 0 NOR2
Xro2 rq5 rq6 rq7 oro2 1 0 NOR3
XrmO nrqO 0 nrpGTl mroO 1 0 MUX
XrdO mroO elk oro7 rqO nrqO 1 0 DFLOPGC
Xrxl nrqO nrql xrol 1 0 XNOR2
Xrml xrol 0 nrpGTl mrol 1 0 MUX
Xrdl mrol elk oro7 rql nrql 1 0
Xra2 nrqO nrql aro2 1 0 NAND2
Xrx2 aro2 rq2 xro2 1 0 XNOR2
Xrm2 xro2 rpO nrpGTl mro2 1 0
Xrd2 mro2 elk oro7 rq2 nrq2 1
Xro3 aro2 rq2 oro3 1 0 NOR2
Xrx3 oro3 nrq3 xro3 1 0 XNOR2
Xrm3 xro3 rpl nrpGTl mro3 1 0
Xrd3 mro3 elk oro7 rq3 nrq3 1
Xra3 oro3 nrq3 aro3 1 0 NAND2
Xrx4 aro3 rq4 xro4 1 0 XNOR2
Xrm4 xro4 rp2 nrpGTl mro4 1 0 MUX
Xrd4 mro4 elk oro7 rq4 nrq4 1 0 DFLOPGC
Xro4 aro3 rq4 oro4 1 0 NOR2
Xrx5 oro4 nrq5 xro5 1 0 XNOR2
Xrm5 xro5 rp3 nrpGTl mro5 1 0 MUX
Xrd5 mro5 elk oro7 rq5 nrq5 1 0 DFLOPGC
Xra4 oro4 nrq5 aro4 1 0 NAND2
Xrx6 aro4 rq6 xro6 1 0 XNOR2
Xrm6 xro6 rp4 nrpGTl mro6 1 0 MUX
Xrd6 mro6 elk oro7 rq6 nrq6 1 0 DFLOPGC
Xro5 aro4 rq6 oro5 1 0 NOR2
Xrx7 oro5 nrq7 xro7 1 0 XNOR2
Xrm7 xro7 rp5 nrpGTl mro7 1 0 MUX
Xrd7 mro7 elk oro7 rq7 nrq7 1 0 DFLOPGC
Xral nrpGTl nrqO arol 1 0 NAND2
Xro6 nrpGTl arol oro6 1 0 NOR2
Xro7 oro6 cntClr oro7 1 0 NOR2

* Power oscillator
XoaO osc npwZ aooO 1 0 NAND2
Xoal nose npwZ aool 1 0 NAND2
XoiO osc nose 1 0 INV
Xoil aooO pla 1 0 INVx
Xoi2 aooO plb 1 0 INVx
Xoi3 aool p2a 1 0 INVx
Xoi4 aool p2b 1 0 INVx

* Simulation Parameters
.TRAN .In 2000n 0 In

.END

Figure 134. Tactor Power Controller SPICE model source code, (continued)

196

Tactor Power Controller Response
enOutput

5

o ' i i i i

npwZero
5

o

i i —i 1

 1 1 1 | i ,-

•

nrpGTl
5

o .1 |

pwrla & pwrlb
5

o 11
pwr2a & pwr2b

5

r—i
>
1-1 0

■

0) "
D)

>

o

pwql
L 1 1 1 . 1 1 1

■

DwaO
5

n

i i i i

■

roa2
5

n

i i i i
1

rpql
5

n

1 1 1 l

.

roaO
5

n

i i i i

1]
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

t ime [uS]

Figure 135. Tactor Power Controller SPICE model response.

197

1. Power Control Logic

The SPICE model for the power control logic structural design of Figure 106 was

not individually tested since it is comprised of a single logic element. The power control

logic component was tested as an integral portion of the Tactor Power Control module

2. Power Oscillator

The SPICE model for the power oscillator implements the structural design of

Figure 107. A full source code listing is provided in Figure 136. An oscillation frequency is

supplied to the power oscillator and the enable power signal is used to control transmission

of the oscillation signal. The power oscillator response in Figure 137 shows that oscillation

begins as soon as the enable power signal is applied and oscillation ends immediately when

the enable power signal is removed.

* PwrOscill.cir ==> Power Oscillator Transient Characteristxcs

* Logic Gate model definitions
.INCLUDE subckt.cir

* Power Supplies
VDS 10 5

* Input Signals
VenP enP 0 PWL(0 5 499n 5 500n 0 699n 0 700n 5 1499n 5 1500n 0 1699n 0

1700n 5 15)
Vosc osc 0 PULSE(0 5 24.5n In In 24n 50n)

* Power oscillator
XaO osc enP aoO 1 0 NAND2
Xal nose enP aol 1 0 NAND2
XiO osc nose 1 0 INV
Xil aoO pla 1 0 INVx
Xi2 aoO plb 1 0 INVx
Xi3 aol p2a 1 0 INVx
Xi4 aol p2b 1 0 INVx

* Simulation Parameters
.TRAN .In 2000n 0 In

.END

Figure 136. Power Oscillator SPICE model source code.

198

oscFreq

n
S
1 5

pwrla & pwrlb

oB
pwr2a & pwr2b

Power Oscillator Response

T r

j L

j L

en Power
i i i i i i i i i

i i i i i i i i !

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
time [uS]

Figure 137. Power Oscillator SPICE model response.

199

3. Pulse Width Down Counter

The SPICE model for the pulse width down counter implements the structural

design of Figure 108. A full source code listing is provided in Figure 138. Various values

are loaded into the down counter to test the transitions between different stages. The pulse

width down counter response in Figure 139 shows the values are loaded into the counter on

the positive clock transition when the load signal is applied. The down counter decreases

the stored value by one at each clock cycle. As seen just after the 1.2 ^iS point, when the

counter reaches zero, it stops counting. The count clear signal at 1.7 \iS immediately clears

all counter stages. The control signal produced by this down counter is the "not pulse width

equals zero." Figure 139 shows this flag is immediately applied whenever the count is non-

zero and immediately cleared when the counter reaches zero.

200

* PWDownCount.cir ==> Pulse Width Down Counter Transient Characteristics

* Logic Gate model definitions
.INCLUDE subckt.cir

* Power Supplies
VDS 1 0 5

* Input Signals
ViO iO 0 PWL(0 5 15)
Vil il 0 PWL(0 0 1349n 0 1350n 5 15)
Vi2 i2 0 PWL(0 0 950n 0 951n 5 1250n 5 1251n 0 1349n 0 1350n 5 15)
Vi3 i3 0 PWL(0 0 650n 0 651n 5 950n 5 951n 0 1349n 0 1350n 5 15)
Vi4 i4 0 PWL(0 0 350n 0 351n 5 650n 5 651n 0 1349n 0 1350n 5 15)
Vi5 i5 0 PWL(0 5 350n 5 351n 0 1349n 0 1350n 5 15)
Vlod lod 0 PWL(0 0 49n 0 50n 5 99n 5 lOOn 0 349n 0 350n 5 399n 5 400n 0

649n 0 650n 5 699n 5 700n 0 949n 0 950n 5 999n 5 lOOOn 0
1349n 0 1350n 5 1399n 5 1400n 0 10)

Vclr clr 0 PWL(0 5 5n 5 6n 0 1709n 0 1710n 5 1719n 5 1720n 0 10)
Vclk elk 0 PULSE(0 5 24.5n In In 24n 50n)

* Pulse Width Down Counter
XaO ooO ool npwZ 1 0 NAND2
XoO q3 q4 g5 ooO 1 0 NOR3
Xol gO ql q2 ool 1 0 NOR3
XmO nqO iO lod moO 1 0 MUX
XdO moO elk oo5 qO ngO 1 0 DFLOPGC
Xxl nqO nql xol 1 0 XNOR2
Xml xol il lod mol 1 0 MUX
Xdl mol elk oo5 ql ngl 1 0 DFLOPGC
Xal ngO ngl aol 1 0 NAND2
Xx2 aol q2 xo2 1 0 XNOR2
Xm2 xo2 i2 lod mo2 1 0 MUX
Xd2 mo2 elk oo5 q2 nq2 1 0 DFLOPGC
Xo2 aol q2 oo2 1 0 NOR2
Xx3 oo2 nq3 xo3 1 0 XNOR2
Xm3 xo3 i3 lod mo3 1 0 MUX
Xd3 mo3 elk oo5 q3 nq3 1 0 DFLOPGC
Xa2 oo2 nq3 ao2 1 0 NAND2
Xx4 ao2 q4 xo4 1 0 XNOR2
Xm4 xo4 i4 lod mo4 1 0 MUX
Xd4 mo4 elk oo5 q4 nq4 1 0 DFLOPGC
Xo3 ao2 q4 oo3 1 0 NOR2
Xx5 oo3 nq5 xo5 1 0 XNOR2
Xm5 xo5 i5 lod mo5 1 0 MUX
Xd5 mo5 elk oo5 q5 ng5 1 0 DFLOPGC
Xo4 lod npwZ oo4 1 0 NOR2
Xo5 oo4 clr oo5 1 0 NOR2

* Simulation Parameters
.TRAN .In 2000n 0 In

.END

Figure 138. Pulse Width Down Counter SPICE model source code.

201

Pulse Width Down Counter Response
r- If

.

cntLoad
5 ■ |—1 ' r— ' |—| ' —

n [- 1

i .— i i •

rnfClear
5

n i i i 1

i i i.i

U 1 i 1 1

npwZero
5; r—J ' ■ L ^

a5
5 I—r

i—i
>
■—■ fl -, ■ i- —r- -r

i J 1 i

« 01= ' ' ' '
2» a4

vo
lt«

9

 U
l

a3
5 r—r i—'—~~
n i i i -i

a2
5- r1 | — J

n , , , _^— , —'— i

ai

5 =~^ ^~

n • i ■■ ■-■-- -i '— i Ui : i 1 1 1

qO 5 nrnfinnnrn~ L. f—« J-. ,-i-| ,—| r-1- 1—1 '

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
time [uS]

Figure 139. Pulse Width Down Counter SPICE model response.

202

4. Repetition Period Down Counter

The SPICE model for the repetition period down counter implements the structural

design of Figure 109. A full source code listing is provided in Figure 140. Various values

are loaded into the down counter to test the transitions between different stages. The

repetition period down counter response in Figure 141 shows the values are loaded into the

counter on the positive clock transition when the load signal is applied. The down counter

decreases the stored value by one at each clock cycle. As seen just after the 1.6 \iS point,

when the counter reaches zero, it stops counting. The count clear signal at 1.2 \xS

immediately clears all counter stages. The control signal produced by this down counter is

the "not repetition period greater than one." Figure 141 shows this flag is immediately

applied whenever the count is one or zero and immediately cleared when the counter value

is greater than one.

* RPDownCount.cir = ==> Repetition Period Down Counter Transient
Characteristics

* Logic Gate model definitions
.INCLUDE subckt.cir

* Power Supplies
YDS 10 5

* Input Signals
ViO iO 0 PWL(0 5 1 5)
Vil il 0 PWL(0 0 1 0)
Vi2 i2 0 PWL(0 0 950n 0 951n 5 1250n 5 1251n 0 10)
Vi3 i3 0 PWL(0 0 650n 0 651n 5 950n 5 951n 0 10)
Vi4 i4 0 PWL(0 0 350n 0 351n 5 650n 5 651n 0 10)
Vi5 i5 0 PWL(0 5 350n 5 351n 0 1 0)
Vlod lod 0 PWL(0 0 49n 0 50n 5 9S n 5 lOOn 0 349n 0 350n 5 399n 5 400n 0

649n 0 650n 5 699n 5 700n 0 949n 0 950n 5 999n 5 lOOOn 0
1349n 0 1350n 5 1399n 5 1400n 0 1 0)

Vclr clr 0 PWL(0 5 5n 5 6n 0 117S n 0 1180n 5 1189n 5 1190n 0 10)
Vclk elk 0 PULSE(0 5 24.5n In In 24n 50n)

Figure 140. Repetition Period Down Counter SPICE model source code.

203

* Repet ition Period Down Counter
XaO ooO ool oo2 nrpGTl 1 0 AND3
XoO ql g2 ooO 1 0 NOR2
Xol q3 g4 ool 1 0 N0R2
Xo2 q5 36 q7 oo2 1 0 NOR3
XmO nqO 0 lod moO 1 0 MUX
XdO moO elk oo7 qO nqO 1 0 DFLOPGC
Xxl nqO nql xol 1 0 XNOR2
Xml xol 0 lod mol 1 0 MUX
Xdl mol elk oo7 ql nql 1 0 DFLOPGC
Xa2 nqO nql ao2 1 0 NAND2
Xx2 ao2 q2 xo2 1 0 XNOR2
Xm2 xo2 iO lod mo2 1 0 MUX
Xd2 mo2 elk oo7 q2 nq2 1 0 DFLOPGC
Xo3 ao2 q2 oo3 1 0 NOR2
Xx3 oo3 nq3 xo3 1 0 XNOR2
Xm3 xo3 il lod mo3 1 0 MUX
Xd3 mo3 elk oo7 q3 nq3 1 0 DFLOPGC
Xa3 oo3 nq3 ao3 1 0 NAND2
Xx4 ao3 q4 xo4 1 0 XN0R2
Xm4 xo4 i2 lod mo4 1 0 MUX
Xd4 mo4 elk oo7 q4 nq4 1 0 DFLOPGC
Xo4 ao3 q4 oo4 1 0 N0R2
Xx5 oo4 nq5 xo5 1 0 XNOR2
Xm5 xo5 i3 lod mo5 1 0 MUX
Xd5 mo5 elk oo7 q5 nq5 1 0 DFLOPGC
Xa4 oo4 nq5 ao4 1 0 NAND2
Xx6 ao4 q6 xo6 1 0 XNOR2
Xm6 xo6 i4 lod mo6 1 0 MUX
Xd6 mo6 elk oo7 q6 nq6 1 0 DFLOPGC
Xo5 ao4 q6 oo5 1 0 NOR2
Xx7 oo5 nq7 xo7 1 0 XNOR2
Xm7 xo7 i5 lod mo7 1 0 MUX
Xd7 mo7 elk oo7 q7 nq7 1 0 DFLOPGC
Xal nrpGTl nqO aol 1 0 NAND2
Xo6 lod aol 006 1 0 NOR2
Xo7 006 clr oo7 1 0 NOR2

* Simulation Parameters
.TRAN .In 2000n 0 In

.END

Figure 140. Repetition Period Down Counter SPICE model source code, (continued)

204

Repetition Period Down Counter Response
c k

o 1 L'V.'.'.V.V.V.V.IL. :

cntLoad

n i 1

:

cntClear
3

A i -

1 1 ni t

:

nrpGTl
5—1 ' '

A , .
:

07
5; 1 ' 1 '

n i 1 ■

:

a6
5; i r— '

>
" n ii

:

S1 a5

£ 5- ' n1
o >

n i i

:

04
5; ' n1

.

03
5f ' n
ni i i

:

02 5 n ' r^
n II

.

al 5: -ni n i—
n i -t-

aO

n' -+- -i- — -

T--
L, 1

:

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
time [uS]

Figure 141. Repetition Period Down Counter SPICE model response.

205

5. Clock Divider

The SPICE model for the clock divider implements the structural design of Figure

110. A full source code listing is provided in Figure 142. The system clock drives a

counter, causing the system clock to be divided by two at each counter stage. Clock divider

testing was limited by the memory of the simulation computers. In order to test all fourteen

stages of the clock divider, three different tests were required. Seven stages were tested at a

time and a two-stage overlap was used to ensure that all broken connections were remade.

The clock divider response in Figure 143 shows the results of the final component test. As

required, each stage reduces the reference frequency by a factor of two.

206

* ClockDiv.cir ==> Clock Divider Transient Characteristics

* Logic Gate model definitions
.INCLUDE subckt.cir

* Power Supplies
VDS 10 5

* Input Signals
Vnrst nRst 0 PWL(0 0 12n 0 13n 5 1849n 5 1850n 0 1899n 0 1900n 5 15)
Vclk elk 0 PULSE(0 5 24.5n In In 24n 50n)

1 0

1 0

* Clock Divider
XdO nqO elk nRst qO nqO
Xxl qO ql xol 1 0 XOR2
Xdl xol elk nRst ql nql
XaO qO ql aoO 1 0 NAND2
Xx2 aoO nq2 xo2 1 0 XOR2
Xd2 xo2 elk nRst q2 nq2 1
XoO aoO nq2 ooO 1 0 NOR2
Xx3 ooO q3 xo3 1 0 XOR2
Xd3 xo3 elk nRst q3 nq3 1
Xal ooO q3 aol 1 0 NAND2
Xx4 aol nq4 xo4 1 0 XOR2
Xd4 xo4 elk nRst q4 nq4 1
Xol aol nq4 ool 1 0 NOR2
Xx5 ool q5 xo5 1 0 XOR2
Xd5 xo5 elk nRst q5 nq5 1
Xa2 ool q5 ao2 1 0 NAND2
Xx6 ao2 nq6 xo6 1 0 XOR2
Xd6 xo6 elk nRst q6 nq6 1
Xo2 ao2 nq6 oo2 1 0 NOR2
Xx7 oo2 q7 xo7 1 0 XOR2
Xd7 xo7 elk nRst q7 nq7 1
Xa3 oo2 q5 ao3 1 0 NAND2
Xx8 ao3 nq8 xo8 1 0 XOR2
Xd8 xo8 elk nRst q8 nq8 1
Xo3 ao3 nq6 oo3 1 0 NOR2
Xx9 oo3 q9 xo9 1 0 XOR2
Xd9 xo9 elk nRst q9 nq9 1
Xa4 oo3 q5 ao4 1 0.NAND2
XxlO ao4 nqlO xolO 1 0 XOR2
XdlO xolO elk nRst qlO nqlO
Xo4 ao4 nq6 oo4 1 0 NOR2
Xxll oo4 qll xoll 1 0 XOR2
Xdll xoll elk nRst qll nqll
Xa5 oo4 q5 ao5 1 0 NAND2
Xxl2 ao5 nql2 xol2 1 0 XOR2
Xdl2 xol2 elk nRst ql2 nql2
Xo5 ao5 nq6 oo5 1 0 NOR2
Xxl3 oo5 ql3 xol3 1 0 XOR2
Xdl3 xol3 elk nRst ql3 nql3

* Simulation Parameters
.TRAN .In 2000n 0 In

.END

DFLOPGC

DFLOPGC

0 DFLOPGC

0 DFLOPGC

0 DFLOPGC

0 DFLOPGC

0 DFLOPGC

0 DFLOPGC

0 DFLOPGC

0 DFLOPGC

1 0 DFLOPGC

1 0 DFLOPGC

1 0 DFLOPGC

1 0 DFLOPGC

Figure 142. Clock Divider SPICE model source code.

207

nReset

q6_

55.

> 5
<u
O)

§ 0

q4

g3_

J2_

ql

qO

Clock Divider Response

u
0.5 1 1.5 2 2.5 3

time [uS]
3.5

Figure 143. Clock Divider SPICE model response.

208

APPENDIX D. TACTILE INTERFACE ANIMATION PROGRAM

The goal of animating TIC operations was to accurately and clearly portray the

functional relations between the wave controlling components. An animation was

developed that illustrates the changes that occur in the TIC registers and counters in

response to a series of command bytes.

A. ANIMATION DESIGN

1. TIC Visual Representation

The significant TIC changes caused by received commands include the controller

state, both wave shape registers, and both down counters. It was essential to depict tactor

activation as a visual vibration of the tactor because this system uses vibration as the

physical stimulus. Figure 144 shows the graphical representation of two intelligent tactors

in a tactile array. The dark gray rectangles represent the tactors. Each is labeled with its

address value. Two labeled columns are provided for each tactor to depict the parameters

associated with pulse width and repetition period. The number at the bottom of each

column is the stored register value for the pulse width or repetition period. The column acts

as a vertical gage representing the value in the down counter associated with each register.

The horizontal bar across the bottom indicates the simulation time and proceeds steadily

from left to right. The rectangular bubbles above the time line are commands that will be

issued when the time reaches their position.

209

Figure 144. Tactile Interface Animation Elements.

2. Animation Color Scheme

A color scheme was conceived to convey additional information regarding TIC

conditions. The tactor rectangles change in color to represent the state of the command

sequence controller. The color used for to fill the pulse width gage is green, exhibiting a

"go" condition for tactor activation any time the count is greater than zero.

Figure 145 shows the animation in progress. When a valid address is received the

TIC shifts to state "B" and the tactor color changes to yellow. When a register command is

received by a tactor in state "B," the register is set to the commanded value, the TIC shifts to

state "C," and the tactor color changes to red. When any address is received by a tactor in

state "C," the TIC shifts to state "A" and the tactor color changes back to gray. The

repetition period down counter value is represented by a blue column in the area below the

"RP" label. During operation, the pulse width gage falls four times as fast as the repetition

210

period gage. When the pulse width column is not zero, the attached tactor vibrates. When

the pulse width column reaches zero, vibration stops. When the repetition period is less than

two, both down counters load the stored register value. Consequently, when a zero

repetition period is assigned, both columns reload on every clock pulse and neither column

decreases in value. When the repetition period register is greater than zero, both counters

decrease until they are reloaded at the repetition period down counter value of one.

Figure 145. Tactile Interface Animation in Progress.

B. ANIMATION PROGRAMMING

Initially, C++ was used to develop the TIC animation. This choice was a mistake

due to the complexity of C++ programming with respect to event timing and graphics

display. Programming efforts were shifted to making a JAVA applet that would run in a

web browser because this application is very limited in scope. With a score of

demonstration applets and extensive documentation, the JAVA implementation was much

211

easier that the C++ effort. The program was divided into three logical objects: the

intelligent tactors, the command bytes, and the demonstration events. Each of these

elements was implemented as an object class and they are discussed in the following

subsections.

1. Intelligent Tactor

The "Tactor" class maintains all required parameters for intelligent tactor simulation.

This object includes methods for initialization, command reception, and graphic display.

Figure 146 contains the complete JAVA source code that implements the tactor class.

/*
* Tactor 1.1 ==> This class creates and manages Intelligent Tactors.
*
* Copyright (c) 1999 Jeff Link, All Rights Reserved.
* Permission to use, copy, modify, and distribute this software and its
* documentation for NON-COMMERCIAL purposes and without fee is hereby
* granted.
*
* The author makes on claims regarding the suitability of this software
* and shall not be liable for any damages suffered as a result of using,
* modifying, or distributing this software or its derivatives.
* */

import Java.awt.Graphics;
import java.awt.Color;
import j ava.awt.Font;

public class Tactor {
private int cX, cY, direction;
private int address, state, pwReg, rpReg;
private int pwCount, rpCount, active;
private Color pwFill,rpFill,border;
private Color[] clrState = new Color[3];
private Font labelFont = new Font("Serif", Font.BOLD, 30);
private String strAddr,strPWReg,strRPReg;

Figure 146. Intelligent Tactor object JAVA source code.

212

/* *

* Constructs a Tactor.
* gparam in_centerx The x-coord of the center
* @param in_centery The y-coord of the center
* @param in_direction The direction 0 = Left, 1 = Right
* @param in_addree Assigned address: 1-12 6
*/

public Tactor(int in_centerx, int in_centery, int in_direction,
int in_address) {

clrState[0] = Color.gray;
. clrState[l] = Color.yellow;
clrState[2] = Color.red;
border=Color.black;
pwFill=Color.green;
rpFill=Color.blue;
cX=in_centerx;
cY=ih_centery;
direction=in_direction;
address=in_address;
strAddr=String.valueOf(address);
initialize();

}

/**
* Initializes TIC values.
* Sparam none
*/

public void initialize() {
state = 0;
pwCount=pwReg=0;
rpCount=rpReg=0;
strPWReg=String.valueOf(pwReg);
strRPReg=String.valueOf(rpReg);

}

Figure 146. Intelligent Tactor object JAVA source code, (continued)

213

/**

* Sends a command to the TIC.
* @param cmd
*/

public void issueCommand(int cmd) {
switch (state) {
case 0:

if (cmd==address || cmd==127)
state=l;

break;
case 1:

if (cmd>127)
state=2;

if (cmd>127 && cmd<192) {
pwReg=pwCount=cmd-128;
strPWReg=String.valueOf(pwReg);
rpCount=4*rpReg;

}
if (cmd>191 && cmd<256) {

rpReg=cmd-192;
rpCount=4*rpReg;
strRPReg=String.valueOf(rpReg);
pwCount=pwReg;

}
break;

case 2:
if (cmd>=0 ScSc cmd<128)

state=0;
if (cmd==address || cmd==127)

state=l;
if (cmd>127 && cmd<192) {
pwReg=pwCount=cmd-12 8;
strPWReg=String.valueOf(pwReg);
rpCount=4*rpReg;

}
if (cmd>191 && cmd<256) {

rpReg=cmd-192;
rpCount=4*rpReg;
strRPReg=String.valueOf(rpReg);
pwCount=pwReg;

}
break;

}
}

Figure 146. Intelligent Tactor object JAVA source code, (continued)

214

* Updates the TIC parameters.
* Sparam
*/

public void updateTactor(int ticks) {
if (pwCount>0)

--pwCount;
if (rpCount>l)

--rpCount;
else {
pwCount=pwReg;
rpCount=4 *rpReg;

}
if (pwCount>0)
active=(ticks%2==0?l:-l);

else
active=0;

}

/**

* Draws the tactor on a graphics object.
* @param g The graphics object which the tactor will be drawn upon.
*/

public void drawTactor(Graphics g) {
int tX=cX+(direction>0?15:-150)-active;
int tY=cY-54+active;
int dX=138+2*active;
int dY=99-2*active;
g.setColor(clrState[state]);
g.fillRoundRect(tX,tY,dX+l,dY+l,30,30);
g.setColor(Color.black);
g.drawRoundRect(tX,tY,dX,dY,30,30);
g.setFont(labelFont);
g.drawstring("PW",cX+(direction>0?-132:30),cY-102);
g.drawstring("RP",cX+(direction>0?-71:106),cY-102);
g.drawstring(strPWReg,cX+(direction>0?-132:30)+charOffset(pwReg),cY+132);
g.drawstring(strRPReg,cX+(direction>0?-75:102)+charOffset(rpReg),cY+132);
g.drawString(strAddr,cX+(direction>0?60:-105)+charOffset(address),cY+8);

g.setColor(Color.darkGray);
g.drawRect(cX+(direction>0?-73:32),cY-97,44,200);
g.drawRect(cX+(direction>0?-130:104),cY-97,44,200);
g.setColor(Color.lightGray);
g.draw3DRect(cX+(direction>0?-72:33),cY-96,42,198,false);
g.draw3DRect(cX+(direction>0?-129:105),cY-96,42,198,false);
g.setColor(pwFill);
g.fillRect(cX+(direction>0?-128:34),cY+102-3*pwCount,41,3*pwCount);
g.setColor(rpFill);
g.fillRect(cX+(direction>0?-71:106),cY+102-(int)(3*rpCount/4),41,

(int)(3*rpCount/4));

Figure 146. Intelligent Tactor object JAVA source code, (continued)

215

private int charOffset(int iTmp) {
int iRtn=0;
if (iTmp<100)

++iRtn;
if (iTmp<10)

++iRtn;
return iRtn*8;

}
}

Figure 146. Intelligent Tactor object JAVA source code, (continued)

2. Command Byte

The "TIC Command" class contains the command byte and transmission time values

for each simulation command. This object includes methods for initialization, parameter

retrieval, and graphic display. Figure 147 contains the complete JAVA source code that

implements the TIC command class.

/*
* TlCCommand 1.1 ==> This class manages commands to be sent to the TIC.
*
* Copyright (c) 1999 Jeff Link, All Rights Reserved.
* Permission to use, copy, modify, and distribute this software and its
* documentation for NON-COMMERCIAL purposes and without fee is hereby
* granted.
*
* The author makes on claims regarding the suitability of this software
* and shall not be liable for any damages suffered as a result of using,
* modifying, or distributing this software or its derivatives.
* */

import java.awt.Graphics;
import java.awt.Color;
import java.awt.Font;
import java.lang.Math;

public class TlCCommand {
private int word, time;
private Color clrText, clrBorder, clrBack;
private Font labelFont = new Font("Serif", Font.PLAIN, 24);
private String strWord;

Figure 147. TIC Command object JAVA source code.

216

/* *

* Constructs a TICCommand.
* @param in_word The byte command to transmit
* Sparam in_time Time to transmit the command
*/

public TICCommand(int in_word, int in_time) {
clrText = Color.blue;
clrBorder = Color.black;
clrBack = Color.white;
word=in_word;
time=in_time;
if (word<128)

strWord="A"+String.valueOf(word);
else if (word<192)

strWord="P"+String.valueOf(word-12 8);
else

strWord="R"+String.valueOf(word-192);

• }

/**

* Gets the command word.
*/

public int getCommandO {
return word;

}

/**

* Gets the time to transmit.
*/

public int getTimeO {
return time;

}

/**

* Draws the TICCommand on a graphics object.
* Oparam g The graphics object to draw the command upon
* @param cX The x-coord for command center
* @param cY The y-coord for command center
*/

public void drawCommand(Graphics g, int cX, int cY) {
int tX=cX-8, tY=cY-23, dX=60, dY=48;
g.setColor(clrBack);
g.fillRoundRect(tX,tY,dX+l,dY+l,20,20);
g.setColor(clrBorder);
g.drawRoundRect(tX,tY,dX,dY, 20, 20) ;
g.setColor(clrText);
g.setFont(labelFont);
g.drawstring(strWord,tX+32-strWord.length()*7,tY+35);

}

Figure 147. TIC Command object JAVA source code, (continued)

217

3. TIC Demo

The "TIC Demo" class contains the parameters required to combine the tactor and

TIC command classes into an animated tactile array. This class is the core of the applet and

implements multi-threading and mouse event processing. The TIC demonstration

instantiates two intelligent tactors and an array of TIC commands. This object includes

methods for initialization, mouse event processing, animation timing, and graphic display.

The applet continuously loops through time, resetting to zero when the maximum time is

reached. The applet resets to the initial conditions when the mouse button is released in the

applet active area. Figure 148 contains the complete JAVA source code that implements the

TIC demonstration class.

/*
* TICDemo 1.1 ==> This class demonstrates TIC operations.
*

* Copyright (c) 1999 Jeff Link, All Rights Reserved.
* Permission to use, copy, modify, and distribute this software and its
* documentation for NON-COMMERCIAL purposes and without fee is hereby
* granted.
*
* The author makes on claims regarding the suitability of this software
* and shall not be liable for any damages suffered as a result of using,
* modifying, or distributing this software or its derivatives.
* */

import java.awt.Graphics;
import Java.awt.Color;
import java.awt.Image;
import j ava.awt.Font ;
import java.awt.event.MouseListener;
import j ava.awt.event.MouseEvent;
import Tactor;
import TICCommand;

Figure 148. Tactile Array Demonstration object JAVA source code.

218

public class TICDemo extends Java.applet.Applet
implements Runnable, MouseListener {

private int sleep=100,height=440,width=700,tt,currCmd,lästernd;
private Tactor tl = new Tactor(180, 170, 0, 1);
private Tactor t2 = new Tactor(520, 170, 1, 2);
private Thread animate=null;
Image backBuffer;
private Graphics backGC;
private TlCCommand[] cmdList;
private Font labelFont = new Font("Serif", Font.BOLD, 30);

public void initO { // Initialize all variables and classes
tt=0;
fillCommands();
updateTactors() ;
try {
backBuffer = createlmage(width, height);
backGC = backBuffer.getGraphics() ;

} catch (Exception e) { backGC=null; }
addMouseListener(this);

}

public void destroy() { // Class destructor
removeMouseListener(this);

}

private void fillCommands() { // Fill command array
cmdList = new TlCCommand[10];
cmdList[0] = new TlCCommand(127,100)
cmdList[l] = new TlCCommand(161,200)
cmdList[2] = new TlCCommand(209,300)
cmdList[3] = new TlCCommand(2,400);
cmdList[4] = new TlCCommand(195,500) ;
cmdList[5] = new TlCCommand(0,600);
currCmd=0;
lastCmd=5;
cmdList[6] = new TlCCommand(0,0);

}

private void updateTactors() { // Updates the tactors when required
if'(tt==0) { // reset tactors and command list when time restarts

tl.initialize();
t2.initialize() ;
currCmd=0;

}
if (tt==cmdList[currCmd].getTimeO) { // transmit the command
tl.issueCommand(cmdList[currCmd].getCommand());
t2.issueCommand(cmdList[currCmd].getCommand());
++currCmd;

}
tl.updateTactor(tt);
t2.updateTactor(tt) ;

}

Figure 148. Tactile Array Demonstration object JAVA source code, (continued)

219

private void paintApplet(Graphics g) { // Paint the applet
int ii=currCmd;
tl.drawTactor(g);
t2.drawTactor(g);
while (ii <= lastCmd) {

cmdList[ii] .drawCcommand(g, cmdList[ii] .getTimeO , 360) ;
++ii;

}
}

public void update(Graphics g) { // When update is called
if (backBuffer != null) {

// double-buffering available
backGC.setColor(Color.lightGray);
backGC.fillRect(0,0,width,height);
backGC.setColor(Color.white);
backGC.fillRect(20,400,tt+1,27);
backGC.setColor(Color.black);
backGC.drawRect(20,400,661, 27);
backGC.setFont(labelFont);
backGC.drawstring("time",width/2-20,425);
paintApplet(backGC);
g.drawlmage(backBuffer, 0, 0, this);

}
else {
//no double-buffering
g.setColor(Color.lightGray);
g.fillRect(0,0,width,height);
g.setColor(Color.white);
g.fillRect(2 0,400,tt+l,27) ;
g.setColor(Color.black) ;
g.drawRect(20,400,661,27);
g.setFont(labelFont);
g.drawstring("time",width/2-20,425) ;
paintApplet(g);

}
}

public void run() { //Run the applet
while (true) {

if (tt<660)
++tt;

else
tt=0;

updateTactors();
repaint();
try { Thread.sleep(sleep); } catch (InterruptedException e) { }

}
}

public void start () { // When the applet is started
if (animate == null) {
animate = new Thread(this);
animate.start();

}
}

Figure 148. Tactile Array Demonstration object JAVA source code, (continued)

220

public void stopO { // When the applet is stopped
if (animate != null)

animate=null;
}

// These functions are required for the MouseListener interface

public void mouseReleased(MouseEvent e) { // Clicked on demo
tt=0;
updateTactors();
repaint();

}

public void mousePressed(MouseEvent e) { }
public void mouseEntered(MouseEvent e) { }
public void mouseExited(MouseEvent e) { }
public void mouseClicked(MouseEvent e) { }

}

Figure 148. Tactile Array Demonstration object JAVA source code, (continued)

4. Demonstration Applet HTML File

A JAVA applet runs as a process embedded in an "html" file. This configuration

allows applets to be executed by any JAVA compliant web browser. Figure 149 contains

the complete HTML code that executes the Tactile Interface demonstration applet.

<html>
<head>
<meta http-equiv="Content-Type"
content="text/html; charset=iso-8859-l">
<title>Tactile Interface Demonstration (l.l)</title>
</head>

<body bgcolor="#C0C0C0">

<hl align="center">Tactile Interface Demonstration/hl>

<p align="center"xapplet code="TICDemo.class" codebase="./'
align="baseline" width="700" height="440"></applet> </p>
</body>
</html>

Figure 149. Tactile Demonstration Applet HTML source code.

221

222

APPENDIXE. VLSI LOGIC ELEMENT DESIGN

VLSI logic element design consists of determining the schematic transistor

connections, testing the planned circuit using SPICE simulation, and then constructing the

element using the VLSI layers. This appendix provides those three design phases for all

logic elements in the TIC design.

A. LOGIC ELEMENT SCHEMATICS

The schematics for all logic elements are contained in the following subsections.

1. Inverter

Figure 150. Inverter schematic.

2. Two Input NAND

a <> out

Hr

2
b

Figure 151. Two Input NAND Gate schematic.

223

3. Three Input NAND

a

b

i«: f\ ^ out

i c

Figure 152. Three Input NAND Gate schematic.

4. Four Input NAND

a

b

f, M > out

c

d

'V

Figure 153. Four Input NAND Gate schematic.

5. Three Input AND

Figure 154. Three Input AND Gate schematic.

224

6. Four Input AND

Figure 155. Four Input AND Gate schematic.

7. Two Input NOR

~5h
a
tfL

 b

out y
Figure 156. Two Input NOR Gate schematic.

8. Three Input NOR

^H
' 1

a

i c

out

K \ >
Figure 157. Three Input NOR Gate schematic.

225

9. Two Input XOR

a . nd r-nd ">

r Ih
out

nr % r nr ~5h ll_
— i i

^

Figure 158. Two Input XOR Gate schematic.

10. Two Input XNOR

Figure 159. Two Input XNOR Gate schematic.

226

11. D flip Flop with Clear

Figure 160. D Rip Flop with Clear schematic.

12. Two Input Multiplexer

Figure 161. Two Input Multiplexer schematic.

B. LOGIC ELEMENT SPICE SIMULATIONS

The SPICE simulation files used to evaluate logic element design response are

contained in the following subsections.

227

1. Inverter

* File: inverter.cir
* CMOS Inverter DC Transfer Characteristics

* CMOSP & CMOSN model definitions
.INCLUDE cmos.cir
.INCLUDE subckt.cir

* Power Supplies
VDS 10 5

* Input Signals
VINa a 0 PULSE(0 5 .5N IN IN 19N 40N)

* Main Circuit
Xia a o 1 0 INV

Cl o 0 .IP

* Simulation Parameters
.TRAN .001N 40N

.END

Figure 162. Inverter SPICE model source code.

2. Two Input NAND

* File: nand2.cir
* CMOS 2-input NAND Transient Characteristics

* CMOSP & CMOSN model definitions
.INCLUDE cmo s.c i r
.INCLUDE subckt.cir

* Power Supplies
VDS 10 5

* Input Signals
VINa a 0 PWL(0n 5 lOn 5 lln 0 20n 0 2In 5 30n 5 3In 0 40n 0 4In 5 50n 5 5In 5

60n 5 61n 5 70n 5 7In 0 80n 0 8In 0 90n 0 9In 0 lOOn 0 lOln 5
HOn 5 llln 0 120n 0 121n 5 130n 5 131n 0 140n 0)

VINb b 0 PWL(0n 5 lOn 5 lln 0 20n 0 2In 5 30n 5 3In 5 40n 5 4In 5 50n 5 51n 0
60n 0 61n 5 70n 5 7In 0 80n 0 8In 5 90n 5 91n 0 lOOn 0 lOln 0
HOn 0 llln 5 120n 5 121n 0 130n 0 13In 0 140n 0)

* Main Circuit
Xla a b o 1 0 NAND2

Cl o 0 .IP

* Simulation Parameters
.TRAN .001N 140N

.END

Figure 163. Two Input NAND gate SPICE model source code.
228

3. Three Input NAND

* File: nand3.cir
* CMOS 3-input NAND Transient Characteristics

* CMOSP & CMOSN model definitions
.INCLUDE cmos.cir
.INCLUDE subckt.cir

* Power Supplies
VDS 10 5

* Input Signals
VINa a 0 PWL(0n 5 lOn 5 lln 5 20n 5 2In 5 30n 5 31n 5 40n 5 41n 5 50n 5 5In 0

60n 0 61n 5 70n 5)
VINb b 0 PWL(0n 5 lOn 5 lln 5 20n 5 21n 5 30n 5 3In 0 40n 0 41n 5 50n 5 51n 5

60n 5 61n 5 70n 5)
VINc c 0 PWL(0n 5 lOn 5 lln 0 20n 0 2In 5 30n 5 3In 5 40n 5 4In 5 50n 5 51n 5

60n 5 61n 5 70n 5)

* Main Circuit
Xla a b c o 1 0 NAND3

Cl o 0 .IP

* Simulation Parameters
.TRAN .0001N 70N

.END

Figure 164. Three Input NAND gate SPICE model source code.

229

4. Four Input NAND

* File: nand4.cir
* CMOS 4-input NAND Transient Characteristics

* CMOSP & CMOSN model definitions
.INCLUDE cmos.cir

* Power Supplies
VDS 10 5

* Input Signals
VINa a 0 PWL(0n 5 lOn 5 lln 5 20n 5 2In 5 30n 5 3In 5 40n 5 4In 5 50n 5 51n 0

60n 0 6In 5 70n 5 71n 5 80n 5 8In 5 90n 5)
VINb b 0 PWL(0n 5 lOn 5 lln 5 20n 5 2In 5 30n 5 3In 0 40n 0 41n 5 50n 5 5In 5

60n 5 -61n 5 70n 5 7In 5 80n 5 81n 5 90n 5)
VINc c 0 PWMOn 5 lOn 5 lln 0 20n 0 2In 5 30n 5 31n 5 40n 5 4In 5 50n 5 51n 5

60n 5 6In 5 70n 5 71n 5 80n 5 8In 5 90n 5)
VINd d 0 PWL(0n 5 lOn 5 lln 5 20n 5 2In 5 30n 5 3In 5 40n 5 41n 5 50n 5 51n 5

60n 5 61n 5 70n 5 7In 0 80n 0 81n 5 90n 5)

* Main Circuit
Ma 1 a o 1 CMOSP W=6U L=2U
Mb o a 2 0 CMOSN W=3U L=2U
Mc 1 b o 1 CMOSP W=6U L=2U
Md 2 b 3 0 CMOSN W=3U L=2U
Me 1 c o 1 CMOSP W=6U L=2U
Mf 3 C 4 0 CMOSN W=3U L=2U
Mg 1 d o 1 CMOSP W=6U L=2U
Mh 4 d 0 0 CMOSN W=3U L=2U

Cl o 0 .IP

* Simulation Parameters
.TRAN .0001N 90N

.END

Figure 165. Four Input NAND gate SPICE model source code.

230

5. Three Input AND

* File: and3.cir
* CMOS 3-input AND Transient Characteristics

* CMOSP & CMOSN model definitions
.INCLUDE cmos.cir
.INCLUDE subckt.cir

* Power Supplies
VDS 10 5

* Input Signals
VINa a 0 PWL(0n 5 lOn 5 lln 5 20n 5 21n 5 30n 5 3In 5 40n 5 41n 5 50n 5 5In 0

60n 0 61n 5 7 On 5)
VINb b 0 PWL(0n 5 lOn 5 lln 5 20n 5 21n 5 30n 5 3In 0 40n 0 41n 5 50n 5 51n 5

60n 5 61n 5 70n 5)
VINc c 0 PWL(0n 5 lOn 5 lln 0 20n 0 2In 5 30n 5 3In 5 40n 5 41n 5 50n 5 5In 5

60n 5 61n 5 70n 5)

* Main Circuit
Xla a b c 2 1 0 NAND3
Xia 2 0 10 INV

Cl o 0 .IP

* Simulation Parameters
.TRAN .0001N 140N

. END

Figure 166. Three Input AND gate SPICE model source code.

231

6. Four Input AND

* File: and4.cir
* CMOS 4-input AMD Transient Characteristics

* CMOSP & CMOSN model definitions
.INCLUDE cmos.cir

* Power Supplies
VDS 10 5

* Input Signals
VINa a 0 PWL(0n 5 lOn 5 lln 5 20n 5 2In 5 30n 5 3In 5 40n 5 41n 5 50n 5 5In 0

60n 0 6In 5 70n 5 71n 5 80n 5 81n 5 90n 5)
VINb b 0 PWL(0n 5 lOn 5 lln 5 20n 5 2In 5 30n 5 3In 0 40n 0 41n 5 50n 5 5In 5

60n 5 6In 5 70n 5 7In 5 80n 5 8In 5 90n 5)
VINc c 0 PWL(0n 5 lOn 5 lln 0 20n 0 2In 5 30n 5 3In 5 40n 5 41n 5 50n 5 51n 5

60n 5 61n 5 70n 5 71n 5 80n 5 81n 5 90n 5)
VINd d 0 PWL(0n 5 lOn 5 lln 5 20n 5 2In 5 30n 5 3In 5 40n 5 4In 5 50n 5 5In 5

60n 5 6In 5 70n 5 7In 0 80n 0 8In 5 90n 5)

* Main Circuit
Ma 1 a 5 1 CMOSP W=6U L=2U
Mb o a 2 0 CMOSN W=3U L=2U
Mc 1 b 5 1 CMOSP W=6U L=2U
Md 2 b 3 0 CMOSN W=3U L=2U
Me 1 c 5 1 CMOSP W=6U L=2U
Mf 3 C 4 0 CMOSN W=3U L=2U
Mg 1 d 5 1 CMOSP W=6U L=2U
Mh 4 d 0 0 CMOSN W=3U L=2U
Xia 5 0 10 INV

Cl o 0 .IP

* Simulation Parameters
.TRAN .0001N 90N

.END

Figure 167. Four Input AND gate SPICE model source code.

232

7. Two Input NOR

* File: nor2.cir
* CMOS 2-input NOR Transient Characteristics

* CMOSP & CMOSN model definitions
.INCLUDE cmos.cir
.INCLUDE subckt.cir

* Power Supplies
VDS 1.05

* Input Signals
VINa a 0 PWL(0n 0 lOn 0 lln 0 20n 0 2In 0 30n 0 3In 5 40n 5 41n 0 50n 0 51n 5

60n 5 6In 0 70n 0 71n 5 80n 5 81n 5 90n 5 9In 0 lOOn 0 lOln 5
HOn 5 llln 5 120n 5 121n 0 130n 0)

VINb b 0 PWL(0n 0 lOn 0 lln 5 20n 5 21n.O 30n 0 3In 0 40n 0 41n 0 50n 0 51n 5
60n 5 6In 5 7'0n 5 7In 5 80n 5 81n 0 90n 0 9In 5 lOOn 5 lOln 0
HOn 0 llln 5 120n 5 121n 0 130n 0)

* Main Circuit
Xla a b o 1 0 NOR2

Cl o 0 .IP

* Simulation Parameters
.TRAN .0001N 130N

.END

Figure 168. Two Input NOR gate SPICE model source code.

233

8. Three Input NOR

* File: nor3.cir
* CMOS 3-input NOR Transient Characteristics

* CMÖSP & CMOSN model definitions
.INCLUDE cmos.cir
.INCLUDE subckt.cir

* Power Supplies
VDS 10 5

* Input Signals
VINa a 0 PWL(0n 0 lOn 0 lln 0 20n 0 21n 0 30n 0 31n 0 40n 0 4In 0 50n 0 51n 5

60n 5 61n 0 70n)
VINb b 0 PWL(0n 0 lOn 0 lln 0 20n 0 2In 0 3On 0 3In 5 40n 5 41n 0 50n 0 51n 0

60n 0 6In 0 70n)
VINc c 0 PWL(0n 0 lOn 0 lln 5 20n 5 2In 0 30n 0 31n 0 40n 0 4In 0 50n 0 5In 0

60n 0 61n 0 70n)

* Main Circuit
Xla a b c o 1 0 NOR3

Cl o 0 .IP

* Simulation Parameters
.TRAN .0001N 70N

.END

Figure 169. Three Input NOR gate SPICE model source code.

234

9. Two Input XOR

* File: xor2.cir
* CMOS 2-input XOR Transient Characteristics

* CMOSP & CMOSN model definitions
.INCLUDE cmos.cir
.INCLUDE subckt.cir

* Power Supplies
VDS 10 5

* Input Signals
VINa a 0 PWL(0n 0 lOn 0 lln 0 20n 0 2In 0 30n 0 3In 5 40n 5 4In 0 50n 0 51n 5

60n 5 6In 0 70n 0 7In 5 80n 5 8In 5 90n 5 9In 0 lOOn 0 lOln 5
HOn 5 llln 5 120n 5 121n 0 130n 0)

VINb b 0 PWL(0n 0 lOn 0 lln 5 20n 5 2In 0 30n 0 3In 0 40n 0 41n 0 50n 0 5In 5
60n 5 6In 5 70n 5 7In 5 80n 5 8In 0 90n 0 9In 5 lOOn 5 lOln 0
HOn 0 llln 5 120n 5 12In 0 130n 0)

* Main Circuit
Xla a b o 1 0 XOR2

Cl o 0 .IP

* Simulation Parameters
.TRAN .0001N 130N

.END

Figure 170. Two Input XOR gate SPICE model source code.

235

10. Two Input XNOR

* File : xnor2g.cir
* CMOS 2-input XNOR-gate Transient Characteristics

* CMOSP & CMOSN model definitions
.INCLUDE cmo s.c i r

* Power Supplies
VDS 10 5

* Input Signals
VINa a 0 PULSE(5 0 5.5N IN IN 9N 2ON)
VINb b 0 PULSE(5 0 .5N IN IN 24N 50N)

* Main Circuit
Ma 1 a 2 1 CMOSP W=6U L=2U
Mb 2 a 0 0 CMOSN W=3U L=2U
Mc 1 2 4 1 CMOSP W=6U L=2U
Md 4 2 0 0 CMOSN W=3U L=2U
Me 4 3 o 1 CMOSP W=6U L=2U
Mf 4 b o 0 CMOSN W=3U L=2U
Mg 2 b o 1 CMOSP W=6U L=2U
Mh 2 3 o 0 CMOSN W=3U L=2U
Mi 1 b 3 1 CMOSP W=6U L=2U
Mj 3 b 0 0 CMOSN W=3U L=2U

Cl o 0 .IP

* Simulation Parameters
.TRAN . 005N 100N

.END

Figure 171. Two Input XNOR gate SPICE model source code.

236

11. D Flip Flop with Clear

* File: dflopgc.cir
* CMOS D-FLIP/FLOP gated w/ Clear Transient Characteristics

* CMOSP & CMOSN model definitions
.INCLUDE cmos.cir
.INCLUDE subckt.cir

* Power Supplies
VDS 10 5

* Input Signals
VINd d 0 PULSE(0 5 .5N IN IN 19N 40N)
VINnc nc 0 PWL(0n 5 48n 5 49n 0 50n 0 51n 5 112n 5 113n 0 117n 0 118n 5

125n 5)
VINclk elk 0 PULSE(0 5 2.5N IN IN 9N 2ON)

* Main Circuit
Xda d elk nc q nq 1 0 DFLOPGC

Cl q 0 .IP
C2 nq 0 -IP

* Simulation Parameters
.TRAN .001N 125N

.END

Figure 172. D Hip Flop with Clear logic element SPICE model source code.

237

12. Two Input Multiplexer

* File: mux2.cir
* CMOS 2-input MUX Transient Characteristics

* CMOSP & CMOSN model definitions
.INCLUDE cmos.cir
.INCLUDE subckt.cir

* Power Supplies
VDS 10 5

* Input Signals
VINa. a 0 PWL(0n 5 lOn 5 lln 5 20n 5 2In 5 30n 5 31n 5 40n 5 41n 5 50n 5 5In 0

60n 0 6In 5 70n 5)
VINb b 0 PWL(0n 5 lOn 5 lln 5 20ri 5 2In 5 30n 5 3In 0 40n 0 4In 5 50n 5 51n 5

60n 5 61n 5 70n 5)
VINs s 0 PWL(0n 5 lOn 5 lln 0 20n 0 2In 5 30n 5 3In 5 40n 5 41n 5 50n 5 51n 5

60n 5 61n 5 70n 5)

* Main Circuit
Xla a b s o 1 0 MUX

Cl o 0 .IP

* Simulation Parameters
.TRAN .0001N 140N

.END

Figure 173. Two Input MUX logic element SPICE model source code.

238

C. VLSI LAYOUT

1. Legend of Layout Layers

Graphic Symbol Layer Description

■ ■ ■ N well - a region of the silicon substrate that has
more free electrons than free holes.

i P well - a region of the silicon substrate that has
more free holes than free electrons.

Active - layout area to be implanted with impurities
to provide primary charge carriers.

Active X - connection shaft that allows contact
between metal 1 and the active area.

P select - boundary of area to be implanted with an
impurity providing free holes.

N select - boundary of area to be implanted with an
impurity providing free electrons.

&
^

Poly 1 - polysilicon doped for improved
conduction; primarily used for FET gates.

■ Poly 1 Connect - connection shaft that allows
contact between metal 1 and polysilicon.

Metal 1 - lowest layer of aluminum used to route
signals and power.

Metal 2 - upper layer of aluminum used to route
signals and power.

■ Via X - connection shaft between metal 1 layer and
metal 2.

Table 25. Legend for Layers used in VLSI Layout.

239

2. Inverter

Figure 174. Inverter layout.

240

3. Two Input NAND

Figure 175. Two Input NAND Gate layout.

241

4. Three Input NAND

Figure 176. Three Input NAND Gate layout.

242

5. Four Input NAND

liiilüikiMßMlüfl.ßMüüiiiiiiiiiiIiii

Figure 177. Four Input NAND Gate layout.

243

6. Three Input AND

Figure 178. Three Input AND Gate layout.

244

7. Four Input AND

Figure 179. Four Input AND Gate layout.

245

8. Two Input NOR

Figure 180. Two Input NOR Gate layout.

246

9. Three Input NOR

Figure 181. Three Input NOR Gate layout.

247

10. Two Input XOR

Figure 182. Two Input XOR Gate layout.

248

11. Two Input XNOR

Figure 183. Two Input XNOR Gate layout.

249

12. D FBp Flop with Clear

Figure 184. D Flip Flop with Clear layout.

250

13. Two Input Multiplexer

A\ \h ; Mt um

Figure 185. Two Input Multiplexer layout.

251

252

APPENDIX F. PARALLEL DATA MODULATOR DESIGN

Each module used to create the Parallel Port Data Modulator was first modeled

using Verilog®. When proper system operation was obtained, ABEL™ was used to create

the required JEDEC format data files for PLD programming. Reference 5 contains

extensive information regarding PLD programming using ABEL and includes an

educational version of the ABEL™ software written by Data I/O Corporation.

A. COMMAND MODULATOR DESIGN USING VERILOG®

The Parallel Port Data Modulator was modeled and tested using Verilog". The

source code for the test program is provided in Figure 186.

253

// File: xmit_test.v
//
// Description: Test bench for Parallel Port Data Modulator
//
// Author: Jeff Link

module xmit_test;

reg [7:0] d;
reg Str;
wire [7:0] q;
wire [3:0] s;
reg Vdd,Gnd;

clock clkl (elk);
reg4_pls rg4a (d[7:4],Vdd,Vdd,clk,q[7:4],Ea,Oa);
reg4_pls rg4b (d[3:0],Ea,0a,clk,q[3:0],eq,odd);
mux8tl mx (q,s[2:0],mxout);
control cntl (Str,eq,mxout,odd,elk,s,ackn,busy,out);

initial begin
Vdd=l;
Gnd=0;
d=55;
Str=0;
$display("\t\t\t d out ackn busy s");
$monitor("time %0d \t%b %b %b %b %d",$time,d,out,ackn,busy,s)
#5;
Str=l;
#20 Str=0;
#400

d=85;
#20
Str=l;
#20 Str=0;
#400

d=205;
#20
Str=l;
#20 Str=0;
#400
$finish;

end

/* always @ (q) begin
if (odd == ~q) begin

$display("time %0d \t%b %b %b %b Parity Error",$time,d,q,eq,odd);
end

end
*/
endmodule

,®. Figure 186. Test bench for Parallel Port Data Modulator Verilog model source code

254

1. Four-Bit Register with Equality and Parity Calculation

The four-bit register with equality and parity calculation was modeled and tested

using Verilog®. The source code for the test program is provided in Figure 187 and the

source code for the model is provided in Figure 188.

// File: reg4_pls_test.v
//
// Description: Test bench for Four-Bit Register w/ Equal & Parity
II
II Author: Jeff Link

module reg4_pls_test;

reg [7:0] d;
wire elk;
wire [7:0] q;
reg Vdd,Gnd;

clock clkl (elk);
reg4_pls rg4a (d[7:4],Vdd,Vdd,clk,q[7:4],Ea,Oa);
reg4_pls rg4b (d[3:0],Ea,Oa,elk,q[3:0],eq,odd);

initial begin
Vdd=l;
Gnd=0;
d=0;
$display("\t\t\t d q eq odd");
$monitor("time %0d \t%b %b %b %b",$time,d,q,eq,odd);
#5;
for (d=0; d<255; d=d+l) begin

#40;
end

$finish;
end

endmodule

Figure 187. Test bench for Four-Bit Register Verilog® model source code.

255

// ***

// File: reg4_pls.v
//
// Description: Behavioral Model of Four-Bit Register w/ Equal & Parity.

//
// Author: Jeff Link
//***

module reg4_pls (d,Ein,Oin,elk,q,Eout,Oout);
input d,Ein,Oin,elk;
wire [3:0] d;
output q,Eout,Oout;
reg [3:0] q;
reg Eout,Oout;

always @(d) begin
Eout = (q == d)&Ein;

end

always @(Ein) begin
Eout = (q == d)&Ein;

end

always @(Oin) begin
Oout = (Aq)~0in;

end

always @(posedge elk) begin
q = d;
Eout = (q == d)&Ein;
Oout = ("qJ^Oin;

end

endmodule

Figure 188. Four-Bit Register Verilog® model source code.

2. Control State Machine

The control state machine was modeled and tested using Verilog®. The source code

for the test program is provided in Figure 189 and the source code for the model is provided

in Figure 190.

256

//♦A***

// File: control_test.v
//
// Description: Test bench for Control State Machine
//
// Author: Jeff Link

module control_test;

reg Str,Eqln,Din,Par;
wire elk;
wire [3:0] s;
reg Vdd,Gnd;

clock clkl (elk);
control cntl (Str,Eqln,Din,Par,elk,s,ackn,busy,out);

initial begin
Vdd=l;
Gnd=0;
$display("\t\t\tStr Eqln Din Par s ackn busy out");
$monitor('"time %0d \t %b %b %b %b %d %b %b %b",

$time,Str,Eqln,Din,Par,s,ackn,busy,out);
Str=0;
Eqln=0;
Din=l;
Par=0;
#5;
Str=l;
#20;
Eqln=l;
#20;
Str=0;
#20;
Din=0;
#20;
Din=l;
#20;
Din=l;
#20;
Din=0;
#20;
Din=l;
#20;
Din=0;
#20;
Din=l;
#200;
$finish;

end

/* always @ (q) begin
if (odd == ~q) begin
$display("time %0d \t%b %b %b %b Parity Error",$time,d,q,eq,odd)

end
end

*/
endmodule

Figure 189. Test bench for Control State Machine Verilog® model source code.

257

// File: control.v
//
// Description: Behavioral Model of Control State Machine
//
// Author: Jeff Link

module control (Str,Eqln,Din,Par,elk,st,ackn,busy,out);
input Str,Eqln,Din,Par,elk;
output st,ackn,busy,out;
reg [3:0] st;
reg ackn,busy,out;

initial begin
st = 0;
ackn=0;
busy=0;
out=l;

end

always @(posedge elk) begin
case (st)

0: if (Str&Eqln) st = 4;
4: st = 12;
12: st = 8;
8: st = 9;
9: st = 11;

11: st = 10;
10: St = 14;
14: St = 15;
15: st = 13;
13: St = 5;
5: st = 1
1: St = 0

endcase
end

always @(st) begin
if (st == 0) busy = 0;
else busy = 1;
if (st == 4) ackn = 1;
else ackn = 0;
if (st == 0) out = 1;
else if (st == 1) out = 1;
else if (st == 4) out = 0;
else if (st == 5) out = Par;
else out = Din;

end

always @(Din) begin
if (st == 0) out = 1;
else if (st == 1) out = 1;
else if (st == 4) out = 0;
else if (st == 5) out = Par;
else out = Din;

end

endmodule

Figure 190. Control State Machine Verilog® model source code.

258

3. Eight-to-One Multiplexer

The eight-to-one multiplexer was modeled and tested using Verflog®. The source

code for the test program is provided in Figure 191 and the source code for the model is

provided in Figure 192.

// File: mux8tl_test.v
//
// Description: Test bench for Eight to One Multiplexer
//
// Author: Jeff Link

module mux8tl_test;

reg [7:0] d;
reg [2:0] sei;
reg Vdd,Gnd;

mux8tl mxl (d,sei,out);

initial begin
Vdd=l;
Gnd=0;
d=0 ;
$display("\t\t\t d sei out") ;
$monitor("time %0d \t%b %b %b",$time,d,sei,out),-
#5;
for (d=55; d<199; d=d+13) begin

for (sel=0; sel<7; sel=sel+l) begin
#40;

end
#40;

end

$finish;
end

/* always @ (q) begin
if (odd == Aq) begin

$display("time %0d \t%b %b %b %b Parity Error",$time,d,q,eq,odd);
end

end
*/
endmodule

Figure 191. Test bench for Eight-to-One Multiplexer Verflog® model source code.

259

// File: mux8tl.v
//
// Description: Behavioral Model of Eight to One Multiplexer.
//
// Author: Jeff Link
i,******-/,******************************* *********************************

module mux8tl (a,sei,out);
input a,sei;
wire [7:0] a;
wire [2:0] sei;
output out;
reg out;

always @(sel) begin
case (sei)

0 out = a[6]
1 out = a[5]
2 out = a[3]
3 out = a[4]
4 out = a[7]
5 out = a[0]
6 out = a[2]
7 out = a[l]

ende :ase
end

endmodui Le

Figure 192. Eight-to-One Multiplexer Verilog® model source code.

260

B. COMMAND MODULATOR IMPLEMENTATION USING ABEL

When operating properly, the Parallel Port Data Modulator elements defined using

Verilog® were converted to JEDEC file format using ABEL™. The source code created for

this conversion is included in the following subsections. These programs were compiled

and optimized to create the JEDEC format data files needed for PLD programming.

1. Four-Bit Register with Equality and Parity Calculation

The four-bit register with equality and parity calculation was converted from

Verilog® source code to JEDEC format using the ABEL™ code provided in Figure 193.

261

Module reg4_pls
Title 'Four-Bit Register with Equality & Parity outputs'

Clk pin 1;
D4..Dl pin 2..5;
Q4..Q1 pin 19..16 istype 'reg,buffer';
!Ein pin 8;
Oin pin 9;
ODD pin 14 istype 'com';
EQ pin 15 istype 'com';
!Eout pin 13 istype 'com';
Oout pin 12 istype 'com';
Input = [D4..D1];
Output = [Q4..Ql];

Equations
Output := Input;
Output.elk = !Clk;
EQ = (Output == Input);
Eout = EQ & Ein;
ODD = Q4 $ Q3 $ Q2 $ Ql;
Oout = ODD $ Oin;

Test_Vectors ([Clk Input !Ein Oin -> Output !Eout Oout])

[o ~h0 0 0 -> ["hO 0 0] ;

[o "hO 0 1 -> ["hO 0 1 3 ;
[1 "hO 1 1 -> "hO 1 1];

C 1 ~h0 1 0 -> Ah0 1 0];

[o ~h0 0 0 -> ~h0 0 0];

[o "h7 0 1 -> ~h0 1 1] ;
[l ~h7 0 0 -> ~h0 1 0];

[i ~h7 0 0 -> Ah0 1 0];
[o ~h7 0 0 -> ~h7 0 1] ;
[o Ah7 0 1 -> "h7 0 0] ;

[1 "h7 0 0 -> "h7 0 1] ;
[1 ~hF 0 0 -> Ah7 1 1] ;
[o ~hF 0 0 -> AhF 0 0] ;

[o AhF 0 0 -> AhF 0 0] ;

[1 "hF 1 0 -> ~hF 1 0];

[1
AhF 1 1 -> AhF 1 1];

[o ~hF 0 1 -> ~hF 0 1];
[o "hO 0 0 -> AhF 1 0];
[1 ~h0 1 0 -> ^hF 1 0] ;

[1 "hO 0 1 -> ~hF 1 1] ;
[o Ah0 0 1 -> Ah0 0 1] ;
[o Ah0 0 0 -> ^hO 0 0] ;
[1 ~h0 0 0 -> Ah0 0 0] ;

[1 ~h2 0 0 -> ~h0 1 0] ;

[o Ah2 0 0 -> Ah2 0 1] ;
[o "h2 0 1 -> "h2 0 0];
[1 Ah2 1 0 -> "h2 1 1];
[1 ~h2 1 1 -> "h2 1 0] ;

[o ~h2 1 0 -> ~h2 1 1];
[o "h2 0 0 -> Ah2 0 1];

End

Figure 193. Four-Bit Register ABEL™ source code.

262

2. Control State Machine

The control state machine was converted from Verilog® source code to JEDEC

format using the ABEL™ code provided in Figure 194.

module control
title 'Control State Machine '

Clk pin 1; 1 Inputs
Din pin 2 ;
!Par pin 9 ;
Strb pin 11; Strobe is active low
!Ein pin 8;
s3..sO pin 16. .19 istype 'reg'; "State bits
out pin 14 istype 'reg,buffer';
busy pin 12 istype 'reg';
Ackn pin 13 istype 'reg';
iStrb pin 15 istype 'com';

Equations
[s3..s0] .elk = Clk
out.elk = Clk
busy.elk = Clk
Ackn.elk = Clk
iStrb = !St3 :b;

State_Diagram [s3..s0]

State 0: out := 1 ; "Idle state
busy := 0;
Ackn := 1;
If (iStrb&E: m) Then 4 Else 0 ;

State 4: out := 1; "Standby, wait for strobe to reset
busy := 1;

n so that you only send one byte.
Ackn := 0;
If (ÜStrb) Then £ Else 4 ;

State 5: out := 0; "Start bit
busy := 1;
Ackn := 1;
Goto 13;

Figure 194. Control State Machine ABEL source code.

263

State 13: out := Din;
busy := 1;
Ackn := 1;
Goto 12;

"Data bits

State 12: out := Din;
busy := 1;
Ackn := 1;
Goto 8;

State 8: out := Din;
busy := 1;
Ackn := 1;
Goto 10;

State 10: out := Din;
busy := 1;
Ackn := 1;
Goto 14;

State 14: out := Din;
busy := 1;
Ackn := 1;
Goto 15;

State 15: out := Din;
busy := 1;
Ackn := 1;
Goto 11;

State 11: out := Din;
busy := 1;
Ackn := 1;
Goto 9;

State 9: out := Din;
busy := 1;
Ackn := 1;
Goto 1;

State 1: out := Par;
busy := 1;
Ackn := 1;

"Parity bit

Goto 0;

Figure 194. Control State Machine ABEL™ source code, (continued)

264

Test_Vectors ([Clk Din Strb Ein Par -> [

[0' .X. 1 0 .X. -> [

[1 .X. 1 0 .X. -> [

[o .X. 0 0 .X. -> [

[1 .X. 0 0 .X. -> [
[0 .X. 0 1 .X. -> [

[1 .X. 0 1 .X. -> [

[0 .X. 0 1 .X. -> [

[1 .X. 0 1 .X. -> [

[o .X. 0 1 .X. -> [

[1 .X. 0 1 .X. -> [

[o .X. 0 1 .X. -> [

[1 .X. 1 1 .X. -> [
[o .X. 1 1 .X. -> [

[1 .X. 1 1 .X. -> [

[o .X. 1 1 .X. -> [

[1 1 1 1 .X. -> [

[o 1 1 1 .X. -> [

[1 1 1 1 .X. -> [

[o 0 1 1 .X. -> [

[1 0 1 1 .X. -> [

[o 0 1 1 .X. -> [

[1 0 1 1 .X. -> [

[o 1 1 1 .X. -> [

[1 1 1 1 .X. -> [
[o 0 1 1 .X. -> [

[1 0 1 1 .X. -> [

[o 1 1 1 .X. -> [
[1 1 1 1 .X. -> [

[o 0 1 1 .X. -> [

[1 0 1 1 .X. -> [

[o 1 1 1 .X. -> [

t 1 1 1 1 .X. -> [

[o .X. 1 1 0 -> [

[1 -X. 1 1 0 -> [

[o .X. 1 1 .X. -> [

[1 .X. 1 1 .X. -> [

[o .X. 1 1 .X. -> [

[1 .X. 1 1 .X. -> [
[o .X. 1 1 .X. -> [

[1 .X. 1 1 .X. -> [

[s3. .s0]
0
0
0
0
0
4
4
4
4
4
4
4
4
5
5

13
13
12
12

10
10
14
14
15
15
11
11
9
9
1
1
0
0*
0
0
0
0
0

, out busy Ackn])
, .X. .X. ■ X.] ;

, 1 0 1] ;
, 1 0 1] ;
, 1 0 1 '] ;
, 1 0 1] ;
, 1 0 1] ;
, 1 0 1] ;
, 1 1 0] ;
, 1 1 0] ;
, 1 1 0] ;
, 1 1 0] ;
, 1 1 0] ;
, 1 1 0] ;
, 1 1 0] ;
, 1 1 0] ;

, o 1 1] ;
, o 1 1];
, 1 1 1] ;
, 1 1 1] ;
, o 1 1] ;
, o 1 1] ;
, o 1 1] ;
, o 1 1];
, 1 1 1] ;
, 1 1 1];
, o 1 1];
, o 1 1];
, 1 1 1];
, 1 1 1] ;
, o 1 1];
, o 1 1] ;
, 1 1 1] ;
, 1 1 1] ;
, o 1 1] ;
, o 1 1] ;
, 1 0 1];
, 1 0 1] ;
, 1 0 1];
, 1 0 1] ;
, 1 0 1];

End

Figure 194. Control State Machine ABEL™ source code, (continued)

3. Eight-to-One Multiplexer

The eight-to-one multiplexer was converted from Verflog® source code to JEDEC

format using the ABEL™ code provided in Figure 195.

265

module mux8tl

Title 'Eight to One Multiplexer'
Clk pin 11;
a7..aO PIN 9 . . 2 ;
s2. .sO PIN 14..12;
out PIN 15 ISTYPE 'com';
nClk pin 16 istype 'com';

A = [a7..a0];
Select = [s2..sO];

Equations
out = (Select ==

(Select ==
(Select ==
(Select ==
(Select ==
(Select ==
(Select ==
(Select ==

nClk = !Clk;

1)
3)
7)
6)
2)
0)
4)
5)

aO
al
a2
a3
a4
a5
a6
a7;

Test_Vectors (Select
5
4
0
2
6
7
3
1
5
4
0
2
6
7
3
1

A
~hAA
~hAA
^hAA,
"hAA,
^hAA,
^hAA,
"hM,
~hAA
Ah55,
~h55,
Ah55,
"h55,
"h55,
"h55,
~h55,
"h55,

Clk]
0]
1
0
0
1
1
0
1]
0]
1]
0]
t>]
1]
1]
0]
1]

->
->
->
->
->
->
->
->
->
->
->
->
->
->
->
->
->

End

[out nClk])

[1 1] ;
[0 0];
[1 1];
[o 1] ;
[1 0] ;
[0 0] ;
[1 1] ;
[0 0];
[0 1] ;
[1 0];
[o 1 .] ;
[1 1] ;
[o 0] ;
[1 , 0] ;
[o , 1] ;
[1 , 0] ;

Figure 195. Eight-to-One Multiplexer ABEL source code.

266

C. COMMAND MODULATOR ELEMENT INFORMATION

Compilation of the ABEL™ source code presented in the preceding section created

the JEDEC format data files. These JEDEC data files were used to program the PLDs to

perform the defined logic functions. Information is generated in the compilation process

regarding utilization, performance, and layout. This chip information is written to a text file

and the essential information from these files is included in the following subsections.

Especially useful is the chip pin assignment diagram; required for laying out the printed

circuit board.

267

1. Four-Bit Register with Equality and Parity Calculation

Information regarding the four-bit register with equality and parity calculation is

included in Figure 196.

Four-Bit Register with Equality & Parity outputs

===== P18CV8 Programmed Logic ====

ODD = (!Q1 & Q2 & Q3 & Q4
Ql & !Q2 & Q3 & Q4
Ql & Q2 & !Q3 & Q4
!Q1 & !Q2 & !Q3 & Q4
Ql & Q2 & Q3 & !Q4
!Q1 & !Q2 & Q3 & !Q4
!Q1 & Q2 & !Q3 & !Q4

Ql & ! Q2 & ! Q3 & ! Q4) ;

EQ = ! (!D1 & Ql
Dl & !Q1
!D2 & Q2
D2 & !Q2
!D3 & Q3
D3 & !Q3
!D4 & Q4
D4 & !Q4);

Eout = !(EQ & !Ein);

Oout = (!ODD Si Oin
ODD & !Oin);

Q4.D = (D4); " ISTYPE 'BUFFER'
Q4.C = (!Clk);

Q3.D = (D3) ; " ISTYPE 'BUFFER'
Q3.C = (!Clk);

Q2.D = (D2) ; " ISTYPE 'BUFFER'
Q2.C = (!Clk);

Ql.D = (Dl); " ISTYPE 'BUFFER'
Ql.C = (!Clk);

Figure 196. Four-Bit Register Summary Information.

268

===== P18CV8 Chip Diagram

P18CV8

Clk

D4

D3

D2

Dl

Ein

Oin

GND

+ \
\

1

2

3

4

5

6

7

8

9

10

20 Vcc

19 Q4

18 Q3

17 Q2

16 Ql

15 !EQ

14 ODD

13 !Eout

12 Oout

11

P18CV8 Resource Allocations

Device | Resource | Design
Resources | Available j Requirement

Part |
Utilization | Unused

Dedicated input pins j 10 j 7
Combinatorial inputs j 10. | 7
Registered inputs | - | 0

Dedicated output pins | - | 2
Bidirectional pins | 8 | 6
Combinatorial outputs | - | 4
Registered outputs 1 ~ 1 4
Reg/Com outputs | 8 |
Two-input XOR | - J 0

Buried nodes | - | 0
Buried registers | - | 0
Buried combinatorials | - | 0

7 | 3 (30 %)
7 j 3 (30 %)

8 | 0(0%)

8 | 0(0%)

Figure 196. Four-Bit Register Summary Information, (continued)

269

=== P18CV8 Product Terms Distribution ==

Signal Pin Terms Terms Terms
Name Assigned Used Max Unused

ODD 14 8 8 0
EQ 15 8 8 0
Eout 13 1 8 7
Oout 12 2 8 6
Q4.REG 19 1 8 7
Q3.REG 18 1 8 7
Q2.REG 17 1 8 7

Ql.REG 16 1 8 7

==== List of Inputs/Feedbacks

Signal Name Pin Pin Type

D4 2 INPUT
D3 3 INPUT

D2 4 INPUT
Dl 5 INPUT
Clk 1 CLK/IN

Ql 16 BIDIR

Q2 17 BIDIR

Q3 18 BIDIR
Q4 19 BIDIR
EQ 15 BIDIR
Ein 8 INPUT
ODD 14 BIDIR
Oin 9 INPUT

P18CV8 Unused Resources

Pin
Number

Pin
Type

Product
Terms

Flip-flop
Type

6
7

11

INPUT
INPUT
INPUT

Figure 196. Four-Bit Register Summary Information, (continued)

270

2. Control State Machine

Information regarding the control state machine is included in Figure 197.

Control State Machine

===== P18CV8 Programmed Logic

iStrb = (!Strb);

s3.D

s3.C

s2.D

s2.C

sl.D

sl.C

sO.D

sO.C

s3.FB & sl.FB
S2.FB & !Sl.FB & sO.FB
S3.FB & isO.FB); " ISTYPE 'BUFFER'
Clk) ;

!s3.FB & S2.FB & !sl.FB
s2.FB & !sl.FB & sO.FB
s3.FB & sl.FB & IsO.FB
!s3.FB & !sl.FB & IsO.FB & iStrb & !Ein); " ISTYPE 'BUFFER'
Clk) ;

S3.FB & S2.FB & Sl.FB
S3.FB & !s2.FB & IsO.FB); " ISTYPE 'BUFFER'
Clk) ;

S3.FB & S2.FB & sl.FB
s3.FB & !s2.FB & sO.FB
!s3.FB & s2.FB & !sl.FB & sO.FB
!s3.FB & S2.FB & !sl.FB & ÜStrb); " ISTYPE 'BUFFER'

(Clk);

OUt.D = (!s3.FB & !sl.FB & isO.FB
s3.FB & Din
!S3.FB & !s2.FB & Isl.FB & !Par); " ISTYPE 'BUFFER'

out.C = (Clk);

busy.D = (S3.FB
s2.FB & !sl.FB
!sl.FB & sO.FB); " ISTYPE 'BUFFER'

busy.C = (Clk);

Ackn.D = (S3.FB
!s2.FB & Isl.FB
!sl.FB & sO.FB); " ISTYPE 'BUFFER'

Ackn.C = (Clk);

Figure 197. Control State Machine Summary Information.

271

== P18CV8 Chip Diagram ====

P18CV8

+ \

Clk

Din

Ein

Par

GND 10

20 Vcc

19 sO

18 si

17 s2

16 s3

15 iStrb

14 out

13 Ackn

12 busy

11 Strb

== P18CV8 Resource Allocations ===

Device
Resources

Dedicated input pins
Combinatorial inputs
Registered inputs

Dedicated output pins
Bidirectional pins
Combinatorial outputs
Registered outputs
Reg/Com outputs
Two-input XOR

Buried nodes
Buried registers
Buried combinatorials

Resource | Design | Part |
Available j Requirement | Utilization | Unused

10 | 5 | 5 | 5 (50 %)
10 | 5 j 5 | 5 (50 %)

1 o j - | -

1 7 1 1
8 | 1 j 8 | 0(0%)

1 1 1 - 1 "
j 7 | - |

8 | - | 8 j 0(0%)
1 o j - j -

- 1 o 1 - 1 -
j 0 j - | -
j 0 j - j -

Figure 197. Control State Machine Summary Information, (continued)

272

P18CV8 Product Terms Distribution

Signal Pin Terms Terms Terms

Name Assigned Used Max Unused

iStrb 15 1 8 7

S3.REG 16 3 8 5
s2.REG 17 4 8 4

si.REG 18 2 8 6

sO.REG 19 4 8 4

out.REG 14 3 8 5

busy.REG 12 3 8 5

Ackn.REG 13 3 8 5

List of Inputs/Feedbacks =====

Signal Name Pin Pin Type

Clk 1 CLK/IN
Strb 11 INPUT
iStrb 15 BIDIR
Ein 8 INPUT
Din 2 INPUT
Par 9 INPUT

=== P18CV8 Unused Resources =====

Pin Pin Product Flip-flop
Number Type Terms Type

3 INPUT - -

4 INPUT - -
5 INPUT - -
6 INPUT - -
7 INPUT - -

Figure 197. Control State Machine Summary Information, (continued)

273

3. Eight-to-One Multiplexer

Information regarding the eight-to-one multiplexer is included in Figure 198.

Eight to One Multiplexer

===== P18CV8 Programmed Logic

out

nClk

(sO & !sl & !s2 & aO
sO & si & !s2 & al
sO & si & s2 & a2
!s0 & si & s2 & a3
!s0 & si & !s2 & a4
!s0 & !sl & !s2 & a5
!s0 & !sl & s2 & a6
sO & !sl & s2 & a7);

(!Clk);

P18CV8 Chip Diagram ===

P18CV8

1

aO 2

al 3

a2 4

a3 5

a4 6

a5 7

a6 8

a7 9

GND 10

20 Vcc

19

18

17

16 nClk

15 out

14 s2

13 si

12 sO

11 Clk

Figure 198. Eight-to-One Multiplexer Summary Information.

274

==== P18CV8 Resource Allocations

Device
Resources

Resource | Design | Part |
Available | Requirement | Utilization | Unused

Dedicated input pins
Combinatorial inputs
Registered inputs

Dedicated output pins
Bidirectional pins
Combinatorial outputs
Registered outputs
Reg/Com outputs
Two-input XOR

Buried nodes
Buried registers
Buried combinatorials

10 | 12 | 9 | 1 (10 %)
10 | 9 | 9 | 1 (10 %)

1 .0 | - 1 -

1 2 | - | -
8 | 0 | 5 j 3 (37 %)

1 2 | - | -
1 0 | — | —

8 | - | 2 | 6 (75 %)
i o | - | -

1 o 1 1
1 o | - | -
1 o | - | -

P18CV8 Product Terms Distribution ===

Signal
Name

Pin
Assigned

out I 15
nClk [16

== List of Inputs/Feedbacks ==

Terms
Used

Terms
Max

Terms
Unused

Signal Name

sO
si
s2
aO
al
a2
a3
a4
a5
a6
a7
Clk

| Pin Pin Type
|========== =========

1 I2 BIDIR

1 I3 BIDIR

1 I4 BIDIR
1 2 INPUT
| 3 INPUT
| 4 INPUT

1 5 INPUT

1 6 INPUT

1 7 INPUT

1 8 INPUT

1 9 INPUT

1 n INPUT

==== P18CV8 Unused Resources

Pin
Number

Pin
Type

Product
Terms

Flip-flop
Type

17
18
19

BIDIR
BIDIR
BIDIR

NORMAL 8
NORMAL 8
NORMAL 8

D
D
D

Figure 198. Eight-to-One Multiplexer Summary Information, (continued)

275

276

APPENDIX G COMMAND TRANSMISSION PROGRAM

The Parallel Port Data Modulator provides a means to convert command bytes from

a computer parallel port to the required serial bit stream. A software interface is needed to

place the bytes on the parallel port for the command modulator to read. C++ was used to

write such an interface.

A. PARALLEL PORT COMMAND TRANSMISSION

The command transmission program accepts byte values from the user and places

those bytes onto the parallel port. The program checks to determine if the peripheral is busy

before placing the command on the port. If the port remains busy for an extended period,

the program notifies the user. After placing the command on the parallel port, the

transmission interface checks for modulator acknowledgement. Once acknowledgement is

received or a wait period expires, the program prompts the user for the next command byte.

The source code for the test program is provided in Figure 199.

277

// Program: parallel.cpp
// Name: Jeff Link
//
// Parallel Command Transmitter, ver 1.2
// Operating Environment: DOS
// Compiler: Borland C++ ver 5.02
// Date: 10 March 1999
//
// Description: This program issues user entered command bytes to the
// parallel port and waits for the command to be acknowledged. The
// program is a driver for the Parallel Port Data Modulator developed
// in conjunction with the Tactor Interface Chip research project.
//***'***

#include <iostream.h>;
#include <dos.h>;

int getValue();

void main(void) {
cout « "Parallel Command Transmitter, ver 1.2" « endl;
cout « "Jeff Link (c) 1999 All rights reserved.\n" « endl;
int *portlist = (int *)0x408;
int lptldata = *portlist;
int lptlstat=lptldata+l;
int lptlcont=lptldata+2;
cout « "LPT1 detected at " « lptldata « endl;
int val,ii,resp;
while((val=getValue())<256 && val>-l) {

ii=0; // this loop waits if port is busy-
while ((resp=(inportb(lptlstat)&0x80))==0 && ii <= 1000) {

if (ii%100==0)
cout « "Parallel port is busy for " « ii « " cycles." « endl;

++ii;
}
if (resp != 0) {
outportb(lptldata,val); // put data on port
outportb(lptlcont,0x01); // send strobe signal
ii=0; // this loop waits for acknowledgement
while ((resp=inportb(lptlstat)&0x40)==0 && ii <=1000) {

if (ii%100==0)
cout « "Waiting " « ii « " cycles for acknowledgement." « endl;

++ii;
}
outportb(lptlcont,0x00); // clear strobe signal
if (resp == 0)
cout « "No data acknowledgement received." « endl;

}
else

cout « "Command transmission aborted; no data sent." « endl;

}
}

int getValue() {
int val;
cout « "Enter value for BYTE to send (>255 quits): ";
ein >> val;
return val;

} ;

Figure 199. Command Transmission Driver C++ source code.

278

APPENDIX H. GOMAC CONFERENCE PAPER

The research presented in this thesis was also published and presented at the 1999

Government Microcircuit Applications Conference. The four-page article, Reference 2, is

included as Figure 200, Figure 201, Figure 202, and Figure 203.

279

A BUS INTERFACE CHIP FOR TACTILE COMMUNICATIONS

Jeffrey P. Link and Douglas J. Fouls
l.'.S. Naval Postgraduate School

MoiiIerev.C'Al)3V43

ABSTRACT

Implementation of tactile communication requires rapid
parametric data transfer along a common bus. The
developed communication protocol and application-specific
interface chip enable precise control of multiple taclors to
convey information to military users.

INTRODUCTION

Touch is a physical sensory input not commonly associated
with conveying computer information. Yet. when a person
is touched, the response is immediate and often involuntary.
The immediate nature of touch response makes it ideal for
communicating critical information. Tactile communication
can also be the most appropriate interface for specific types
of information when existing visual and auditory activities
cannot be compromised ''.

The Naval Aerospace Medical Research Laboratory built a
rudimentary implementation of tactile communication in
their Tactile Situation Awareness System (TSAS). To
refine, this interface, the Naval Postgraduate School
developed a compact communication topology for
connecting each tactile transmitter (tactor) to the controlling
microprocessor. Serial communications were selected lor
this application to minimize the number of conductors
required lor data transfer.

An application-specific 'factor Interface Chip (TIC)
provides the necessary hardware to realize the serial
communication scheme. Bach tactor in a forty-clement
array will include a TIC. as shown in Figure I. that controls
tactor activation. This hardware combination forms an
"intelligent tactor" that shifts waveform creation from the

4-wiir
harness

-K-~. .----.,a^.....■niftT.-il|-i;1ti111-il<lr-TViiiWr. :

interface chip I

Figure I. The Tactor Interlace Chip (TIC) embedded in the
casing of each tactile transmitter (tactor) controls
application^!' power for waveform generation.

microprocessor to the individual taclors. The resulting
decrease in computational load allows use of a slower
microprocessor, decreasing system power consumption.

COMPETING DESIGN CONSTRAINTS

SIZE: Funding limits forced microchip size to be a primary
constraint. Since component interconnections consume the
majority of VLSI layout area1"', chip size primarily bounds
the number of circuit components. This sharply limits
circuit complexity and fundamentally affected design
decisions.

POWER: Since the tactile interface is a stand-alone bridge
between the information source and the human user, each
TIC must draw minimum current from the battery-powered
system. Using the smallest possible CMOS FH'l's
throughout the circuit minimizes power consumption of the
elementary components. Aggressively simplifying the logic
structure further reduced power requirements.

SPEED: Small transistor size adversely influences response
time. .Minimum transistor size is sufficient at a 1 MHz
clock speed unless long interconnects or several components
must be driven. Individual elements were resized based on
their output loading.

CONTROL STRUCTURE

ADDRESS: Transmission of tactile messages requires each
tactor in the forty-clement array to be capable of producing
defined pulse shapes. These tactile signals can be
independent or synchronized with several other taclors.
Since the pulse shape parameters are transmitted on a
common data bus. each TIC must be able to recognize
commands meant to control the attached tactor. Unique
identification is accomplished by assigning an "address" to
each TIC. Use of a single TIC design for all taclors is
possible by externally setting the address parameter by
grounding TIC input pins. Planned modifications to this
design are discussed in the "Future Improvements" section
of this paper.

PULSE SHAPE: Tactors are repeatedly pulsed to convey
information to the user. Changing the pulse duration and
pulse rate creates different physical sensations and can be
used to relate differing messages. Coordinated pulse shapes
on adjacent tactors can produce an illusion of motion to
relate additional information. Pulse shape production
requires two parameters, pulse width and repetition period,
illustrated in Figure 2. The TIC stores these values in data
registers that are'used to control tactor activation.

Figure 200. GOMAC Conference Paper (page 1 of 4).

280

k— 1-1,' V

laelor
idle

bipolar laelor
aclivation

 repetition periot
v

" ^

Figure 2. 'Factor activation is controlled by the pulse width
and repetition period values that are stored on the TIC.

COMMUNICATION PROTOCOL

An cighl-bil communication scheme is utilized lo ensure
easy integration 10 different micro-controllers. The data
words represent address, pulse width, and repetition period
commands as summarized in Table I. The Universal

j Word l-'oruiat Meaning

j I) X X X X X X X 7-bit Address

I 1 (1 X X X X X X 6-bit Pulse Width
1
! 1 1 X X X X X X 6-bit Repetition Period

Table 1. Format of the three command types allows rapid
address comparison and pulse-shape parameter storage.

Synchronous/Asynchronous Receiver-Transmitter (USART;
data format is used to package the command bytes into a
serial bit stream that can be easily detected. The packet is
illustrated in Figure 3 and includes a start bit. eight data bits,
a parity bit and a stop bit. This data package formal also
provides basic fault protection. The data line remains at a
loaic "1" while idle.

P >

p;irity stop

Figure .i. Standard ÜSART format provides a discernible
package and basic error detection.

OPERATIONAL INSCRIPTION

The TIC continuously monitors the serial data bus and
decodes the bit stream to detect and latch command bytes
onto an internal command bus. When the bytes are latched.
a data-valid signal triggers command evaluation and
subsequent control of the TIC operational stale. The state
diagram in Figure 4 illustrates ihe TIC operating sequence.

Initially, the TIC is in a monitor state waiting to receive a
valid address. When an appropriate address is received, the
TIC shifts lo a condition that waits for a command to set the
register values. When a register command is received, the
TIC enters a state that responds to all register commands
until an address is delected, marking the end of the
command cycle. This operating sequence provides easy

kciisier Command Received Valid Address Received

initial Suite TransitionCondition

All

A

IS

Ii

(

(

: Reset asserted

! Bus valid iV valid address

Any oilier address received

Anv leLiisler command received

i Any address received

i Anv re'eisler command received

; Next Stale

A

15

Ii

C

A

c:

Figure 4. The Operating Sequence ensures that each TIC
only responds to properly addresses commands.

control and allows ihe identical command to be sent to
several tactors simultaneously.

If ihe stored pulse width is non-zero, the TIC activates the
aliached laelor in a pattern defined by the stored values of
pulse width and repetition period. Any change to either
waveform parameter will cause ihe TIC to reset the wave
counter, synchronizing all tactors that simultaneously
receive the command.

FUNCTIONAL COMPONENTS

TIC design focused on three areas: detecting and latching
serial commands onto the command bus, interpreting
commands to set the activation parameters, and generating
bipolar eurrenl to drive the attached tactor. Each functional
area was designed to operate independently with well-
defined inputs and outputs. This modular approach was
critical to the design and testing of lower-level components.

SliKIAI. DATA RECKIVER. The Serial Data Receiver
(Figure 5; continuously monitors the input data line to
detect and latch transmitted packets onto the command bus.
It consists of a twelve-bit shift register, a validity checker,
and an eight-bil latch. .The most recent twelve data bits arc
stored in the shift register and compared to the USART
format rules. When a siring of bits is detected that meets the
validity check, the command byte of the data packet is
latched onto the command bus. The latch signal also
triggers a "Bus Data Valid" signal that enables the command
decoder. A feedback path partially clears the shift register
to ensure that two immediately sequential data packets do
not produce an erroneous command detection.

Figure 201. GOMAC Conference Paper (page 2 of 4).

281

Serial Data Receiver

! 1
12 111! JM|>llt SIlllT H..<|.SWI j*

i

' V:i!i.!.ly Clmtk

8 b.l D..l;i L-.tch

*- ——
r« !

I 1
T

Figure 5. The .Serial Data Receiver extracts the
commands from tin.' serial command stream.

S-bil

COMMAND DECODER AND CONTROLLER. The
Command Decoder and Controller (Figure 6; evaluates the
received commands and adjusts the internally stored
waveform parameters if the command is properly addressed
lo the attached tactor. il consists of a sequence control let,
address eomparitor. and two si.\-bit registers. The sequence
controller is a state machine (refer to Figure 4) that causes
the TIC lo react only to properly addressed commands. The
address reference maintains a unique address lor the
individual tactor. The TIC ignores all received commands
until the address eomparitor delects its assigned address (or
the "all call" addressi. It then updates the stored pulse width
and repetition period with every new register command.
Then, when an address is received, the TIC" returns to a
monitor condition and wails for the next properly addressed
command.

Command Decoder and Controller

8 t.U C<vnr.>.i.U U.r.

Pulsr Wnllh

Figure 6. The Command Decoder and Controller interprets
commands and updates register values as appropriate.

TACTOR POWER CONTROLLER. The Tactor Power
Controller (Figure 7) converts the input data signals into
pulsed bipolar power that is applied directly to the tactor. A
frequency divider reduces the I MHz clock lo a selectable
tactor oscillating frequency and a 62.5 Hz down counter
clock. The oscillator frequency is applied lo the power

oscillator lo produce alternating current for the tactor. 'I he-
power controller uses two synchronized down counters to
create the stored wave shape by activating and disabling the
power oscillator output. The control logic produces the
wave cvele by clearing and loading both down counters
based on the down counter conditions and the "enable
output" signal.

Tactor Power Controller

SSi
:fi tn.il/tf .fio

H, yr.w

fi,r"K

«?.r; H/

Pulse W.dih pcliiion Period

» D°
* 1 ■1

1
-^ a«.

j Divide

I
1

*
a.«!. L«M<1

ZZT 1 . 1
Conlro!

0-c j

,1
Bi-f.oli.
Pow*

CKeiH.it

A.- v< ■■•■

* Ou:r..it

'l
t
t

Figure 7. The 'factor Power Controller applies power lo the
lactor based on stored wave-shape parameters.

SPECIAL DESIGN FEATURES

Several features of the current design provide enhanced
svstem performance. Some features are included primarily
for chip testing and evaluation.

MULTIPLE COMMAND PACKET ADDRESSING. The
operating-state transition definitions allow a command byte
stream that includes multiple TIC addresses. This feature
allows a command to activate several taclors with a single,
synchronized wave-shape.

ALI .-CALL ADDRESS. One address value is reserved to
represent a valid address for all TICs. This feature is
intended for use with a system reset command or when
testing the cnlii'C communication array.

DIAL RESET CIRCUIT. The analog response of the
circuit components is used to produce an initial reset signal
for the first 201) nS of TIC operation. The reset ensures thai
all components establish a known condition when ihe circuit
is siarted. A selectable, low-voltage reset is included to
protect the system from an erratic response caused by low
input voltage.

SELECTABLE OSCILLATOR FREQUENCY. An input
jumper provides two tactor oscillation frequencies: 125 Hz
and 250 Hz. This feature allows the TIC lo be used with
dillerent taclors during prototype evaluation.

SELECTABLE ADDRESS. By including Ihe TIC address
as an external input, a single TIC design is used for all
lactors in the communication array. In addition to
enhancing prototype testing, this approach will be retained
in future versions to ensure that a single "intelligent tactor"
can function in every possible array position.

Figure 202. GOMAC Conference Paper (page 3 of 4).

282

FUTURE IMPROVEMENTS

PROGRAMMABLE ADDRESSES. Use of programmable-
gates will allow the TIC address to be electronically
assigned. Additionally, multiple address registers may be
included to allow issuing TIC commands to groups of
tactors simultaneously using a single address.

PROGRAMMABLE OSCILLATION FREQUENCY.
Adding a frequency register would allow the TIC to vary the
tactor activation frequency. This could be implemented
either through an external jumper setting or as an additional
command.

PROGRAMMABLE VOLTAGE SHAPING. Currently the
tactor voltage is applied in a bipolar square wave. Tactor
response may vary noticeably when a sine wave is used to
drive the tactor. Use of a varying voltage would also reduce
the switching transients created by the square-wave current
spikes.

EXPANDED INSTRUCTION SET. Many additional
instructions could he included in the basic TIC control
language. This change requires restructuring the command
protocol and making significant changes to the TIC design.
Including a programmable micro-code register into the
svstem would provide the most flexible solution. However,
this approach is not a priority due to its huge increase in
circuit complexity and required layout area.

TWO-WAY COMMUNICATIONS. A change to the
fundamental system paradigm might incorporate the ability
for real-lime feedback to the controller. The status data
could include all current TIC parameters. Incorporating an .
onboard vibration sensor could also provide actual
indication of tactor operating parameters.

PROJECT STATUS

The TIC is completely designed and simulated using
Cadence VLSI design software. Exhaustive simulation
shows that the system operates precisely as designed. The
circuit performed flawlessly at speeds up to 5 MHz.

The National Science Foundation VLSI design program
facilitated TIC fabrication through the MOS1S1'1 service.
MOSIS provides low-cost prototyping and production
service for VLSI circuit development.

Initial chip testing produced no delectable output. Visual
examination of the chip showed areas of possible
contamination during the fabrication process. Subsequent
chip evaluation with a scanning electron microscope
revealed contamination between power lines and between
data paths (Figure S). Figure 0 shows aluminum oxidation
detected along some of the conductors. Further evaluation
is in progress to precisely identify the faults in each chip.

SUMMARY

Tactile communication is an extremely viable method of
conveving information without impeding other sensory

Figure S. Scanning Electron Microscope images of possible
power shorts (left) and command-bus shorts (right).

■::«. ft'. -■
; •■: ! •:-••"••. is ■■:*■

'•-im 1*

■•V-"3t# H
:-.-. . fe«fe---v m

:,. ■-. yi,.S .^fsgs :■;-■'

Figure 9. Scanning Electron Microscope images of areas
with aluminum oxidation.

inputs. In many applications, tactile messages may be most
appropriate due to their intuitive and covert nature.

Previously, tactile communication has been experimental
and limited, lacking methods to take the technology beyond
the laboratory. The Naval Postgraduate School has
developed a communication protocol and a tactor interface
chip thai will advance tactile communication beyond its
current academic environment.

Implementation of this concept is currently awaiting VLSI
fabrication. As more funding becomes available, many
improvements are planned for the next generation of Tactor
Interface Chips. The Naval Postgraduale School is anxious
to advance this technology for military and public
applications.

REFERENCES

111 Hong Z. Tan and Alex Pcntland. "Tactual Displays For
Wearable Computing". Proceedings of the First
International Symposium on Wearable. Computers,
IEEE. pp. 84-89, 1997.

[21 Neil I I.E. Weste and Kamran Eshraghian, Principles of
CMOS VLSI Design. Addison-Wesley, 1993.

131 http://www.mosis.org/

Figure 203. GOMAC Conference Paper (page 4 of 4).

283

284

LIST OF REFERENCES

1. Jan Axelson, Parallel Port Complete, Lakeview Research, 1996.

2. Jeffrey P. Link and Douglas J. Fouts, "A Bus Interface Chip for Tactile
Communications," Digest of Papers for the 1999 Government Microcircuit
Applications Conference, pp. 460-463, March 1999.

3. Victor P. Nelson, H. Troy Nagle, Bill D. Carroll, and J. David Irwin, Digital Logic
Circuit Analysis and Design, Prentice Hall, 1995.

4. H. Tan and A. Pentland, 'Tactual Displays For Wearable Computing," Proceedings
of the First International Symposium on Wearable Computers, IEEE, pp. 84-89,
1997.

5. David Pellerin and Michael Holley, Digital Design using ABEL™, PTR Prentice
Hall, 1994.

6. Donald E. Thomas and Philip R. Moorby, The Verilog® Hardware Description
Language, 3rd edition, Kluwer Academic, 1996.

7. Paul W. Tuinenga, SPICE: A Guide to Circuit Simulation & Analysis Using
PSpice®, Prentice Hall, 1988.

8. John F. Wakerly, Digital Design: Principles and Practices, 2nd edition, Prentice
Hall, 1994.

9. Neil H. E. Weste and Kamran Eshraghian, Principles of CMOS VLSI Design: A
Systems Perspecitve, 2nd edition, Addison-Wesley, 1993.

10. M. Zlotnik, "Applying Electro-Tactile Display Technology to Fighter Aircraft ~
Flying With Feeling Again," Proceedings of the National Aerospace and
Electronics Conference, IEEE, pp. 191-197,1988.

285

286

INITIAL DISTRIBUTION LIST

No. Copies

1. Defense Technical Information Center 2
8725 John J. Kingman Rd., STE 0944
Ft. Belvoir, VA 22060-6218

2. Dudley Knox Library 2
Naval Postgraduate School
411 Dyer Rd.
Monterey, CA 93943-5101

3. RADM Robert C. Chaplin, USN 1
Naval Postgraduate School
1 University Circle
Monterey, CA 93943

4. Chairman, Code EC 1
Department of Electrical and Computer Engineering
Naval Postgraduate School
Monterey, CA 93943-5121

5. Professor Douglas J. Fouts, Code EC/Fs 2
Department of Electrical and Computer Engineering
Naval Postgraduate School
Monterey, CA 93943-5121

6. Professor Jon T. Butler, Code EC/Bu 2
Department of Electrical and Computer Engineering
Naval Postgraduate School
Monterey, CA 93943-5121

7. Angus H. Rupert, M.D., Ph.D 1
CDR, Navy Medical Corps
Naval Aerospace Medical Research Laboratory
51HoveyRoad
NAS Pensacols, FL 32504

8. LCDR Jeffrey P. Link 4
11808 Mallard Rd.
Mason Neck, VA 22079-4111

287

